ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpo Unicode version

Theorem nfmpo 5991
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpo.1  |-  F/_ z A
nfmpo.2  |-  F/_ z B
nfmpo.3  |-  F/_ z C
Assertion
Ref Expression
nfmpo  |-  F/_ z
( x  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    A( x, y, z)    B( x, y, z)    C( x, y, z)

Proof of Theorem nfmpo
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-mpo 5927 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C ) }
2 nfmpo.1 . . . . . 6  |-  F/_ z A
32nfcri 2333 . . . . 5  |-  F/ z  x  e.  A
4 nfmpo.2 . . . . . 6  |-  F/_ z B
54nfcri 2333 . . . . 5  |-  F/ z  y  e.  B
63, 5nfan 1579 . . . 4  |-  F/ z ( x  e.  A  /\  y  e.  B
)
7 nfmpo.3 . . . . 5  |-  F/_ z C
87nfeq2 2351 . . . 4  |-  F/ z  w  =  C
96, 8nfan 1579 . . 3  |-  F/ z ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C )
109nfoprab 5974 . 2  |-  F/_ z { <. <. x ,  y
>. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C ) }
111, 10nfcxfr 2336 1  |-  F/_ z
( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167   F/_wnfc 2326   {coprab 5923    e. cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-oprab 5926  df-mpo 5927
This theorem is referenced by:  nfof  6141  nfseq  10549
  Copyright terms: Public domain W3C validator