ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc GIF version

Theorem nfsbc 3020
Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfsbc.1 𝑥𝐴
nfsbc.2 𝑥𝜑
Assertion
Ref Expression
nfsbc 𝑥[𝐴 / 𝑦]𝜑

Proof of Theorem nfsbc
StepHypRef Expression
1 nftru 1490 . . 3 𝑦
2 nfsbc.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfsbc.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfsbcd 3019 . 2 (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑)
76mptru 1382 1 𝑥[𝐴 / 𝑦]𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1374  wnf 1484  wnfc 2336  [wsbc 2999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-sbc 3000
This theorem is referenced by:  cbvralcsf  3157  cbvrexcsf  3158  opelopabf  4325  ralrnmpt  5729  rexrnmpt  5730  uchoice  6230  dfopab2  6282  dfoprab3s  6283  mpoxopoveq  6333
  Copyright terms: Public domain W3C validator