ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc GIF version

Theorem nfsbc 3006
Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfsbc.1 𝑥𝐴
nfsbc.2 𝑥𝜑
Assertion
Ref Expression
nfsbc 𝑥[𝐴 / 𝑦]𝜑

Proof of Theorem nfsbc
StepHypRef Expression
1 nftru 1477 . . 3 𝑦
2 nfsbc.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfsbc.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfsbcd 3005 . 2 (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑)
76mptru 1373 1 𝑥[𝐴 / 𝑦]𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1365  wnf 1471  wnfc 2323  [wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-sbc 2986
This theorem is referenced by:  cbvralcsf  3143  cbvrexcsf  3144  opelopabf  4305  ralrnmpt  5700  rexrnmpt  5701  uchoice  6190  dfopab2  6242  dfoprab3s  6243  mpoxopoveq  6293
  Copyright terms: Public domain W3C validator