ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab3s Unicode version

Theorem dfoprab3s 6169
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfoprab3s  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
Distinct variable groups:    ph, w    x, y, z, w
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem dfoprab3s
StepHypRef Expression
1 dfoprab2 5900 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
2 nfsbc1v 2973 . . . . 5  |-  F/ x [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph
3219.41 1679 . . . 4  |-  ( E. x ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph )  <->  ( E. x E. y  w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph ) )
4 sbcopeq1a 6166 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph  <->  ph ) )
54pm5.32i 451 . . . . . . 7  |-  ( ( w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph )  <->  ( w  =  <. x ,  y
>.  /\  ph ) )
65exbii 1598 . . . . . 6  |-  ( E. y ( w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph )  <->  E. y ( w  =  <. x ,  y
>.  /\  ph ) )
7 nfcv 2312 . . . . . . . 8  |-  F/_ y
( 1st `  w
)
8 nfsbc1v 2973 . . . . . . . 8  |-  F/ y
[. ( 2nd `  w
)  /  y ]. ph
97, 8nfsbc 2975 . . . . . . 7  |-  F/ y
[. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph
10919.41 1679 . . . . . 6  |-  ( E. y ( w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph )  <->  ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) )
116, 10bitr3i 185 . . . . 5  |-  ( E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) )
1211exbii 1598 . . . 4  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. x ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) )
13 elvv 4673 . . . . 5  |-  ( w  e.  ( _V  X.  _V )  <->  E. x E. y  w  =  <. x ,  y >. )
1413anbi1i 455 . . . 4  |-  ( ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph )  <->  ( E. x E. y  w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph ) )
153, 12, 143bitr4i 211 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  e.  ( _V  X.  _V )  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph ) )
1615opabbii 4056 . 2  |-  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
171, 16eqtri 2191 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730   [.wsbc 2955   <.cop 3586   {copab 4049    X. cxp 4609   ` cfv 5198   {coprab 5854   1stc1st 6117   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-oprab 5857  df-1st 6119  df-2nd 6120
This theorem is referenced by:  dfoprab3  6170
  Copyright terms: Public domain W3C validator