ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab3s Unicode version

Theorem dfoprab3s 6243
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfoprab3s  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
Distinct variable groups:    ph, w    x, y, z, w
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem dfoprab3s
StepHypRef Expression
1 dfoprab2 5965 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
2 nfsbc1v 3004 . . . . 5  |-  F/ x [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph
3219.41 1697 . . . 4  |-  ( E. x ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph )  <->  ( E. x E. y  w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph ) )
4 sbcopeq1a 6240 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph  <->  ph ) )
54pm5.32i 454 . . . . . . 7  |-  ( ( w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph )  <->  ( w  =  <. x ,  y
>.  /\  ph ) )
65exbii 1616 . . . . . 6  |-  ( E. y ( w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph )  <->  E. y ( w  =  <. x ,  y
>.  /\  ph ) )
7 nfcv 2336 . . . . . . . 8  |-  F/_ y
( 1st `  w
)
8 nfsbc1v 3004 . . . . . . . 8  |-  F/ y
[. ( 2nd `  w
)  /  y ]. ph
97, 8nfsbc 3006 . . . . . . 7  |-  F/ y
[. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph
10919.41 1697 . . . . . 6  |-  ( E. y ( w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph )  <->  ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) )
116, 10bitr3i 186 . . . . 5  |-  ( E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) )
1211exbii 1616 . . . 4  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. x ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) )
13 elvv 4721 . . . . 5  |-  ( w  e.  ( _V  X.  _V )  <->  E. x E. y  w  =  <. x ,  y >. )
1413anbi1i 458 . . . 4  |-  ( ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph )  <->  ( E. x E. y  w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph ) )
153, 12, 143bitr4i 212 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  e.  ( _V  X.  _V )  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph ) )
1615opabbii 4096 . 2  |-  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
171, 16eqtri 2214 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   [.wsbc 2985   <.cop 3621   {copab 4089    X. cxp 4657   ` cfv 5254   {coprab 5919   1stc1st 6191   2ndc2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-oprab 5922  df-1st 6193  df-2nd 6194
This theorem is referenced by:  dfoprab3  6244
  Copyright terms: Public domain W3C validator