Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoxopoveq | Unicode version |
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopoveq.f |
Ref | Expression |
---|---|
mpoxopoveq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopoveq.f | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | fveq2 5461 | . . . . 5 | |
4 | op1stg 6088 | . . . . . 6 | |
5 | 4 | adantr 274 | . . . . 5 |
6 | 3, 5 | sylan9eqr 2209 | . . . 4 |
7 | 6 | adantrr 471 | . . 3 |
8 | sbceq1a 2942 | . . . . . 6 | |
9 | 8 | adantl 275 | . . . . 5 |
10 | 9 | adantl 275 | . . . 4 |
11 | sbceq1a 2942 | . . . . . 6 | |
12 | 11 | adantr 274 | . . . . 5 |
13 | 12 | adantl 275 | . . . 4 |
14 | 10, 13 | bitrd 187 | . . 3 |
15 | 7, 14 | rabeqbidv 2704 | . 2 |
16 | opexg 4183 | . . 3 | |
17 | 16 | adantr 274 | . 2 |
18 | simpr 109 | . 2 | |
19 | rabexg 4103 | . . 3 | |
20 | 19 | ad2antrr 480 | . 2 |
21 | equid 1678 | . . 3 | |
22 | nfvd 1506 | . . 3 | |
23 | 21, 22 | ax-mp 5 | . 2 |
24 | nfvd 1506 | . . 3 | |
25 | 21, 24 | ax-mp 5 | . 2 |
26 | nfcv 2296 | . 2 | |
27 | nfcv 2296 | . 2 | |
28 | nfsbc1v 2951 | . . 3 | |
29 | nfcv 2296 | . . 3 | |
30 | 28, 29 | nfrabxy 2634 | . 2 |
31 | nfsbc1v 2951 | . . . 4 | |
32 | 26, 31 | nfsbc 2953 | . . 3 |
33 | nfcv 2296 | . . 3 | |
34 | 32, 33 | nfrabxy 2634 | . 2 |
35 | 2, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34 | ovmpodxf 5936 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wnf 1437 wcel 2125 crab 2436 cvv 2709 wsbc 2933 cop 3559 cfv 5163 (class class class)co 5814 cmpo 5816 c1st 6076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-iota 5128 df-fun 5165 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 |
This theorem is referenced by: mpoxopovel 6178 |
Copyright terms: Public domain | W3C validator |