ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoxopoveq Unicode version

Theorem mpoxopoveq 6328
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
Hypothesis
Ref Expression
mpoxopoveq.f  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
Assertion
Ref Expression
mpoxopoveq  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( <. V ,  W >. F K )  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
Distinct variable groups:    n, K, x, y    n, V, x, y    n, W, x, y    n, X, x, y    n, Y, x, y
Allowed substitution hints:    ph( x, y, n)    F( x, y, n)

Proof of Theorem mpoxopoveq
StepHypRef Expression
1 mpoxopoveq.f . . 3  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
21a1i 9 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  F  =  ( x  e. 
_V ,  y  e.  ( 1st `  x
)  |->  { n  e.  ( 1st `  x
)  |  ph }
) )
3 fveq2 5578 . . . . 5  |-  ( x  =  <. V ,  W >.  ->  ( 1st `  x
)  =  ( 1st `  <. V ,  W >. ) )
4 op1stg 6238 . . . . . 6  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( 1st `  <. V ,  W >. )  =  V )
54adantr 276 . . . . 5  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( 1st `  <. V ,  W >. )  =  V )
63, 5sylan9eqr 2260 . . . 4  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  x  =  <. V ,  W >. )  ->  ( 1st `  x )  =  V )
76adantrr 479 . . 3  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( 1st `  x
)  =  V )
8 sbceq1a 3008 . . . . . 6  |-  ( y  =  K  ->  ( ph 
<-> 
[. K  /  y ]. ph ) )
98adantl 277 . . . . 5  |-  ( ( x  =  <. V ,  W >.  /\  y  =  K )  ->  ( ph 
<-> 
[. K  /  y ]. ph ) )
109adantl 277 . . . 4  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( ph  <->  [. K  /  y ]. ph ) )
11 sbceq1a 3008 . . . . . 6  |-  ( x  =  <. V ,  W >.  ->  ( [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph ) )
1211adantr 276 . . . . 5  |-  ( ( x  =  <. V ,  W >.  /\  y  =  K )  ->  ( [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph )
)
1312adantl 277 . . . 4  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph )
)
1410, 13bitrd 188 . . 3  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph )
)
157, 14rabeqbidv 2767 . 2  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  ->  { n  e.  ( 1st `  x )  | 
ph }  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
16 opexg 4273 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  -> 
<. V ,  W >.  e. 
_V )
1716adantr 276 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  <. V ,  W >.  e.  _V )
18 simpr 110 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  K  e.  V )
19 rabexg 4188 . . 3  |-  ( V  e.  X  ->  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  e.  _V )
2019ad2antrr 488 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  e.  _V )
21 equid 1724 . . 3  |-  z  =  z
22 nfvd 1552 . . 3  |-  ( z  =  z  ->  F/ x ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V ) )
2321, 22ax-mp 5 . 2  |-  F/ x
( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )
24 nfvd 1552 . . 3  |-  ( z  =  z  ->  F/ y ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V ) )
2521, 24ax-mp 5 . 2  |-  F/ y ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )
26 nfcv 2348 . 2  |-  F/_ y <. V ,  W >.
27 nfcv 2348 . 2  |-  F/_ x K
28 nfsbc1v 3017 . . 3  |-  F/ x [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph
29 nfcv 2348 . . 3  |-  F/_ x V
3028, 29nfrabw 2687 . 2  |-  F/_ x { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
31 nfsbc1v 3017 . . . 4  |-  F/ y
[. K  /  y ]. ph
3226, 31nfsbc 3019 . . 3  |-  F/ y
[. <. V ,  W >.  /  x ]. [. K  /  y ]. ph
33 nfcv 2348 . . 3  |-  F/_ y V
3432, 33nfrabw 2687 . 2  |-  F/_ y { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
352, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34ovmpodxf 6073 1  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( <. V ,  W >. F K )  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   F/wnf 1483    e. wcel 2176   {crab 2488   _Vcvv 2772   [.wsbc 2998   <.cop 3636   ` cfv 5272  (class class class)co 5946    e. cmpo 5948   1stc1st 6226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228
This theorem is referenced by:  mpoxopovel  6329
  Copyright terms: Public domain W3C validator