ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoxopoveq Unicode version

Theorem mpoxopoveq 6137
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
Hypothesis
Ref Expression
mpoxopoveq.f  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
Assertion
Ref Expression
mpoxopoveq  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( <. V ,  W >. F K )  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
Distinct variable groups:    n, K, x, y    n, V, x, y    n, W, x, y    n, X, x, y    n, Y, x, y
Allowed substitution hints:    ph( x, y, n)    F( x, y, n)

Proof of Theorem mpoxopoveq
StepHypRef Expression
1 mpoxopoveq.f . . 3  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
21a1i 9 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  F  =  ( x  e. 
_V ,  y  e.  ( 1st `  x
)  |->  { n  e.  ( 1st `  x
)  |  ph }
) )
3 fveq2 5421 . . . . 5  |-  ( x  =  <. V ,  W >.  ->  ( 1st `  x
)  =  ( 1st `  <. V ,  W >. ) )
4 op1stg 6048 . . . . . 6  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( 1st `  <. V ,  W >. )  =  V )
54adantr 274 . . . . 5  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( 1st `  <. V ,  W >. )  =  V )
63, 5sylan9eqr 2194 . . . 4  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  x  =  <. V ,  W >. )  ->  ( 1st `  x )  =  V )
76adantrr 470 . . 3  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( 1st `  x
)  =  V )
8 sbceq1a 2918 . . . . . 6  |-  ( y  =  K  ->  ( ph 
<-> 
[. K  /  y ]. ph ) )
98adantl 275 . . . . 5  |-  ( ( x  =  <. V ,  W >.  /\  y  =  K )  ->  ( ph 
<-> 
[. K  /  y ]. ph ) )
109adantl 275 . . . 4  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( ph  <->  [. K  /  y ]. ph ) )
11 sbceq1a 2918 . . . . . 6  |-  ( x  =  <. V ,  W >.  ->  ( [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph ) )
1211adantr 274 . . . . 5  |-  ( ( x  =  <. V ,  W >.  /\  y  =  K )  ->  ( [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph )
)
1312adantl 275 . . . 4  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph )
)
1410, 13bitrd 187 . . 3  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph )
)
157, 14rabeqbidv 2681 . 2  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  ->  { n  e.  ( 1st `  x )  | 
ph }  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
16 opexg 4150 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  -> 
<. V ,  W >.  e. 
_V )
1716adantr 274 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  <. V ,  W >.  e.  _V )
18 simpr 109 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  K  e.  V )
19 rabexg 4071 . . 3  |-  ( V  e.  X  ->  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  e.  _V )
2019ad2antrr 479 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  e.  _V )
21 equid 1677 . . 3  |-  z  =  z
22 nfvd 1509 . . 3  |-  ( z  =  z  ->  F/ x ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V ) )
2321, 22ax-mp 5 . 2  |-  F/ x
( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )
24 nfvd 1509 . . 3  |-  ( z  =  z  ->  F/ y ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V ) )
2521, 24ax-mp 5 . 2  |-  F/ y ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )
26 nfcv 2281 . 2  |-  F/_ y <. V ,  W >.
27 nfcv 2281 . 2  |-  F/_ x K
28 nfsbc1v 2927 . . 3  |-  F/ x [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph
29 nfcv 2281 . . 3  |-  F/_ x V
3028, 29nfrabxy 2611 . 2  |-  F/_ x { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
31 nfsbc1v 2927 . . . 4  |-  F/ y
[. K  /  y ]. ph
3226, 31nfsbc 2929 . . 3  |-  F/ y
[. <. V ,  W >.  /  x ]. [. K  /  y ]. ph
33 nfcv 2281 . . 3  |-  F/_ y V
3432, 33nfrabxy 2611 . 2  |-  F/_ y { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
352, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34ovmpodxf 5896 1  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( <. V ,  W >. F K )  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   F/wnf 1436    e. wcel 1480   {crab 2420   _Vcvv 2686   [.wsbc 2909   <.cop 3530   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   1stc1st 6036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038
This theorem is referenced by:  mpoxopovel  6138
  Copyright terms: Public domain W3C validator