| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoxopoveq | Unicode version | ||
| Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpoxopoveq.f |
|
| Ref | Expression |
|---|---|
| mpoxopoveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopoveq.f |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | fveq2 5578 |
. . . . 5
| |
| 4 | op1stg 6238 |
. . . . . 6
| |
| 5 | 4 | adantr 276 |
. . . . 5
|
| 6 | 3, 5 | sylan9eqr 2260 |
. . . 4
|
| 7 | 6 | adantrr 479 |
. . 3
|
| 8 | sbceq1a 3008 |
. . . . . 6
| |
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | 9 | adantl 277 |
. . . 4
|
| 11 | sbceq1a 3008 |
. . . . . 6
| |
| 12 | 11 | adantr 276 |
. . . . 5
|
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | 10, 13 | bitrd 188 |
. . 3
|
| 15 | 7, 14 | rabeqbidv 2767 |
. 2
|
| 16 | opexg 4273 |
. . 3
| |
| 17 | 16 | adantr 276 |
. 2
|
| 18 | simpr 110 |
. 2
| |
| 19 | rabexg 4188 |
. . 3
| |
| 20 | 19 | ad2antrr 488 |
. 2
|
| 21 | equid 1724 |
. . 3
| |
| 22 | nfvd 1552 |
. . 3
| |
| 23 | 21, 22 | ax-mp 5 |
. 2
|
| 24 | nfvd 1552 |
. . 3
| |
| 25 | 21, 24 | ax-mp 5 |
. 2
|
| 26 | nfcv 2348 |
. 2
| |
| 27 | nfcv 2348 |
. 2
| |
| 28 | nfsbc1v 3017 |
. . 3
| |
| 29 | nfcv 2348 |
. . 3
| |
| 30 | 28, 29 | nfrabw 2687 |
. 2
|
| 31 | nfsbc1v 3017 |
. . . 4
| |
| 32 | 26, 31 | nfsbc 3019 |
. . 3
|
| 33 | nfcv 2348 |
. . 3
| |
| 34 | 32, 33 | nfrabw 2687 |
. 2
|
| 35 | 2, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34 | ovmpodxf 6073 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-iota 5233 df-fun 5274 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 |
| This theorem is referenced by: mpoxopovel 6329 |
| Copyright terms: Public domain | W3C validator |