| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoxopoveq | Unicode version | ||
| Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpoxopoveq.f |
|
| Ref | Expression |
|---|---|
| mpoxopoveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopoveq.f |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | fveq2 5561 |
. . . . 5
| |
| 4 | op1stg 6217 |
. . . . . 6
| |
| 5 | 4 | adantr 276 |
. . . . 5
|
| 6 | 3, 5 | sylan9eqr 2251 |
. . . 4
|
| 7 | 6 | adantrr 479 |
. . 3
|
| 8 | sbceq1a 2999 |
. . . . . 6
| |
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | 9 | adantl 277 |
. . . 4
|
| 11 | sbceq1a 2999 |
. . . . . 6
| |
| 12 | 11 | adantr 276 |
. . . . 5
|
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | 10, 13 | bitrd 188 |
. . 3
|
| 15 | 7, 14 | rabeqbidv 2758 |
. 2
|
| 16 | opexg 4262 |
. . 3
| |
| 17 | 16 | adantr 276 |
. 2
|
| 18 | simpr 110 |
. 2
| |
| 19 | rabexg 4177 |
. . 3
| |
| 20 | 19 | ad2antrr 488 |
. 2
|
| 21 | equid 1715 |
. . 3
| |
| 22 | nfvd 1543 |
. . 3
| |
| 23 | 21, 22 | ax-mp 5 |
. 2
|
| 24 | nfvd 1543 |
. . 3
| |
| 25 | 21, 24 | ax-mp 5 |
. 2
|
| 26 | nfcv 2339 |
. 2
| |
| 27 | nfcv 2339 |
. 2
| |
| 28 | nfsbc1v 3008 |
. . 3
| |
| 29 | nfcv 2339 |
. . 3
| |
| 30 | 28, 29 | nfrabw 2678 |
. 2
|
| 31 | nfsbc1v 3008 |
. . . 4
| |
| 32 | 26, 31 | nfsbc 3010 |
. . 3
|
| 33 | nfcv 2339 |
. . 3
| |
| 34 | 32, 33 | nfrabw 2678 |
. 2
|
| 35 | 2, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34 | ovmpodxf 6052 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 |
| This theorem is referenced by: mpoxopovel 6308 |
| Copyright terms: Public domain | W3C validator |