ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoxopoveq Unicode version

Theorem mpoxopoveq 6298
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
Hypothesis
Ref Expression
mpoxopoveq.f  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
Assertion
Ref Expression
mpoxopoveq  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( <. V ,  W >. F K )  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
Distinct variable groups:    n, K, x, y    n, V, x, y    n, W, x, y    n, X, x, y    n, Y, x, y
Allowed substitution hints:    ph( x, y, n)    F( x, y, n)

Proof of Theorem mpoxopoveq
StepHypRef Expression
1 mpoxopoveq.f . . 3  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
21a1i 9 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  F  =  ( x  e. 
_V ,  y  e.  ( 1st `  x
)  |->  { n  e.  ( 1st `  x
)  |  ph }
) )
3 fveq2 5558 . . . . 5  |-  ( x  =  <. V ,  W >.  ->  ( 1st `  x
)  =  ( 1st `  <. V ,  W >. ) )
4 op1stg 6208 . . . . . 6  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( 1st `  <. V ,  W >. )  =  V )
54adantr 276 . . . . 5  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( 1st `  <. V ,  W >. )  =  V )
63, 5sylan9eqr 2251 . . . 4  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  x  =  <. V ,  W >. )  ->  ( 1st `  x )  =  V )
76adantrr 479 . . 3  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( 1st `  x
)  =  V )
8 sbceq1a 2999 . . . . . 6  |-  ( y  =  K  ->  ( ph 
<-> 
[. K  /  y ]. ph ) )
98adantl 277 . . . . 5  |-  ( ( x  =  <. V ,  W >.  /\  y  =  K )  ->  ( ph 
<-> 
[. K  /  y ]. ph ) )
109adantl 277 . . . 4  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( ph  <->  [. K  /  y ]. ph ) )
11 sbceq1a 2999 . . . . . 6  |-  ( x  =  <. V ,  W >.  ->  ( [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph ) )
1211adantr 276 . . . . 5  |-  ( ( x  =  <. V ,  W >.  /\  y  =  K )  ->  ( [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph )
)
1312adantl 277 . . . 4  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph )
)
1410, 13bitrd 188 . . 3  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  -> 
( ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph )
)
157, 14rabeqbidv 2758 . 2  |-  ( ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )  /\  (
x  =  <. V ,  W >.  /\  y  =  K ) )  ->  { n  e.  ( 1st `  x )  | 
ph }  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
16 opexg 4261 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  -> 
<. V ,  W >.  e. 
_V )
1716adantr 276 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  <. V ,  W >.  e.  _V )
18 simpr 110 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  K  e.  V )
19 rabexg 4176 . . 3  |-  ( V  e.  X  ->  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  e.  _V )
2019ad2antrr 488 . 2  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  e.  _V )
21 equid 1715 . . 3  |-  z  =  z
22 nfvd 1543 . . 3  |-  ( z  =  z  ->  F/ x ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V ) )
2321, 22ax-mp 5 . 2  |-  F/ x
( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )
24 nfvd 1543 . . 3  |-  ( z  =  z  ->  F/ y ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V ) )
2521, 24ax-mp 5 . 2  |-  F/ y ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V )
26 nfcv 2339 . 2  |-  F/_ y <. V ,  W >.
27 nfcv 2339 . 2  |-  F/_ x K
28 nfsbc1v 3008 . . 3  |-  F/ x [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph
29 nfcv 2339 . . 3  |-  F/_ x V
3028, 29nfrabw 2678 . 2  |-  F/_ x { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
31 nfsbc1v 3008 . . . 4  |-  F/ y
[. K  /  y ]. ph
3226, 31nfsbc 3010 . . 3  |-  F/ y
[. <. V ,  W >.  /  x ]. [. K  /  y ]. ph
33 nfcv 2339 . . 3  |-  F/_ y V
3432, 33nfrabw 2678 . 2  |-  F/_ y { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
352, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34ovmpodxf 6048 1  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( <. V ,  W >. F K )  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   F/wnf 1474    e. wcel 2167   {crab 2479   _Vcvv 2763   [.wsbc 2989   <.cop 3625   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   1stc1st 6196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198
This theorem is referenced by:  mpoxopovel  6299
  Copyright terms: Public domain W3C validator