Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoxopoveq | Unicode version |
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopoveq.f |
Ref | Expression |
---|---|
mpoxopoveq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopoveq.f | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | fveq2 5496 | . . . . 5 | |
4 | op1stg 6129 | . . . . . 6 | |
5 | 4 | adantr 274 | . . . . 5 |
6 | 3, 5 | sylan9eqr 2225 | . . . 4 |
7 | 6 | adantrr 476 | . . 3 |
8 | sbceq1a 2964 | . . . . . 6 | |
9 | 8 | adantl 275 | . . . . 5 |
10 | 9 | adantl 275 | . . . 4 |
11 | sbceq1a 2964 | . . . . . 6 | |
12 | 11 | adantr 274 | . . . . 5 |
13 | 12 | adantl 275 | . . . 4 |
14 | 10, 13 | bitrd 187 | . . 3 |
15 | 7, 14 | rabeqbidv 2725 | . 2 |
16 | opexg 4213 | . . 3 | |
17 | 16 | adantr 274 | . 2 |
18 | simpr 109 | . 2 | |
19 | rabexg 4132 | . . 3 | |
20 | 19 | ad2antrr 485 | . 2 |
21 | equid 1694 | . . 3 | |
22 | nfvd 1522 | . . 3 | |
23 | 21, 22 | ax-mp 5 | . 2 |
24 | nfvd 1522 | . . 3 | |
25 | 21, 24 | ax-mp 5 | . 2 |
26 | nfcv 2312 | . 2 | |
27 | nfcv 2312 | . 2 | |
28 | nfsbc1v 2973 | . . 3 | |
29 | nfcv 2312 | . . 3 | |
30 | 28, 29 | nfrabxy 2650 | . 2 |
31 | nfsbc1v 2973 | . . . 4 | |
32 | 26, 31 | nfsbc 2975 | . . 3 |
33 | nfcv 2312 | . . 3 | |
34 | 32, 33 | nfrabxy 2650 | . 2 |
35 | 2, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34 | ovmpodxf 5978 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wnf 1453 wcel 2141 crab 2452 cvv 2730 wsbc 2955 cop 3586 cfv 5198 (class class class)co 5853 cmpo 5855 c1st 6117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 |
This theorem is referenced by: mpoxopovel 6220 |
Copyright terms: Public domain | W3C validator |