ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexcsf Unicode version

Theorem cbvrexcsf 3148
Description: A more general version of cbvrexf 2722 that has no distinct variable restrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
cbvralcsf.1  |-  F/_ y A
cbvralcsf.2  |-  F/_ x B
cbvralcsf.3  |-  F/ y
ph
cbvralcsf.4  |-  F/ x ps
cbvralcsf.5  |-  ( x  =  y  ->  A  =  B )
cbvralcsf.6  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvrexcsf  |-  ( E. x  e.  A  ph  <->  E. y  e.  B  ps )

Proof of Theorem cbvrexcsf
Dummy variables  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1542 . . . 4  |-  F/ z ( x  e.  A  /\  ph )
2 nfcsb1v 3117 . . . . . 6  |-  F/_ x [_ z  /  x ]_ A
32nfcri 2333 . . . . 5  |-  F/ x  z  e.  [_ z  /  x ]_ A
4 nfsbc1v 3008 . . . . 5  |-  F/ x [. z  /  x ]. ph
53, 4nfan 1579 . . . 4  |-  F/ x
( z  e.  [_ z  /  x ]_ A  /\  [. z  /  x ]. ph )
6 id 19 . . . . . 6  |-  ( x  =  z  ->  x  =  z )
7 csbeq1a 3093 . . . . . 6  |-  ( x  =  z  ->  A  =  [_ z  /  x ]_ A )
86, 7eleq12d 2267 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  [_ z  /  x ]_ A ) )
9 sbceq1a 2999 . . . . 5  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
108, 9anbi12d 473 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  /\  ph )  <->  ( z  e.  [_ z  /  x ]_ A  /\  [. z  /  x ]. ph )
) )
111, 5, 10cbvex 1770 . . 3  |-  ( E. x ( x  e.  A  /\  ph )  <->  E. z ( z  e. 
[_ z  /  x ]_ A  /\  [. z  /  x ]. ph )
)
12 nfcv 2339 . . . . . . 7  |-  F/_ y
z
13 cbvralcsf.1 . . . . . . 7  |-  F/_ y A
1412, 13nfcsb 3122 . . . . . 6  |-  F/_ y [_ z  /  x ]_ A
1514nfcri 2333 . . . . 5  |-  F/ y  z  e.  [_ z  /  x ]_ A
16 cbvralcsf.3 . . . . . 6  |-  F/ y
ph
1712, 16nfsbc 3010 . . . . 5  |-  F/ y
[. z  /  x ]. ph
1815, 17nfan 1579 . . . 4  |-  F/ y ( z  e.  [_ z  /  x ]_ A  /\  [. z  /  x ]. ph )
19 nfv 1542 . . . 4  |-  F/ z ( y  e.  B  /\  ps )
20 id 19 . . . . . 6  |-  ( z  =  y  ->  z  =  y )
21 csbeq1 3087 . . . . . . 7  |-  ( z  =  y  ->  [_ z  /  x ]_ A  = 
[_ y  /  x ]_ A )
22 df-csb 3085 . . . . . . . 8  |-  [_ y  /  x ]_ A  =  { v  |  [. y  /  x ]. v  e.  A }
23 cbvralcsf.2 . . . . . . . . . . . 12  |-  F/_ x B
2423nfcri 2333 . . . . . . . . . . 11  |-  F/ x  v  e.  B
25 cbvralcsf.5 . . . . . . . . . . . 12  |-  ( x  =  y  ->  A  =  B )
2625eleq2d 2266 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
v  e.  A  <->  v  e.  B ) )
2724, 26sbie 1805 . . . . . . . . . 10  |-  ( [ y  /  x ]
v  e.  A  <->  v  e.  B )
28 sbsbc 2993 . . . . . . . . . 10  |-  ( [ y  /  x ]
v  e.  A  <->  [. y  /  x ]. v  e.  A
)
2927, 28bitr3i 186 . . . . . . . . 9  |-  ( v  e.  B  <->  [. y  /  x ]. v  e.  A
)
3029abbi2i 2311 . . . . . . . 8  |-  B  =  { v  |  [. y  /  x ]. v  e.  A }
3122, 30eqtr4i 2220 . . . . . . 7  |-  [_ y  /  x ]_ A  =  B
3221, 31eqtrdi 2245 . . . . . 6  |-  ( z  =  y  ->  [_ z  /  x ]_ A  =  B )
3320, 32eleq12d 2267 . . . . 5  |-  ( z  =  y  ->  (
z  e.  [_ z  /  x ]_ A  <->  y  e.  B ) )
34 dfsbcq 2991 . . . . . 6  |-  ( z  =  y  ->  ( [. z  /  x ]. ph  <->  [. y  /  x ]. ph ) )
35 sbsbc 2993 . . . . . . 7  |-  ( [ y  /  x ] ph 
<-> 
[. y  /  x ]. ph )
36 cbvralcsf.4 . . . . . . . 8  |-  F/ x ps
37 cbvralcsf.6 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3836, 37sbie 1805 . . . . . . 7  |-  ( [ y  /  x ] ph 
<->  ps )
3935, 38bitr3i 186 . . . . . 6  |-  ( [. y  /  x ]. ph  <->  ps )
4034, 39bitrdi 196 . . . . 5  |-  ( z  =  y  ->  ( [. z  /  x ]. ph  <->  ps ) )
4133, 40anbi12d 473 . . . 4  |-  ( z  =  y  ->  (
( z  e.  [_ z  /  x ]_ A  /\  [. z  /  x ]. ph )  <->  ( y  e.  B  /\  ps )
) )
4218, 19, 41cbvex 1770 . . 3  |-  ( E. z ( z  e. 
[_ z  /  x ]_ A  /\  [. z  /  x ]. ph )  <->  E. y ( y  e.  B  /\  ps )
)
4311, 42bitri 184 . 2  |-  ( E. x ( x  e.  A  /\  ph )  <->  E. y ( y  e.  B  /\  ps )
)
44 df-rex 2481 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
45 df-rex 2481 . 2  |-  ( E. y  e.  B  ps  <->  E. y ( y  e.  B  /\  ps )
)
4643, 44, 453bitr4i 212 1  |-  ( E. x  e.  A  ph  <->  E. y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   F/wnf 1474   E.wex 1506   [wsb 1776    e. wcel 2167   {cab 2182   F/_wnfc 2326   E.wrex 2476   [.wsbc 2989   [_csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-sbc 2990  df-csb 3085
This theorem is referenced by:  cbvrexv2  3152
  Copyright terms: Public domain W3C validator