Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfopab2 | Unicode version |
Description: A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfopab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbc1v 2969 | . . . . 5 | |
2 | 1 | 19.41 1674 | . . . 4 |
3 | sbcopeq1a 6155 | . . . . . . . 8 | |
4 | 3 | pm5.32i 450 | . . . . . . 7 |
5 | 4 | exbii 1593 | . . . . . 6 |
6 | nfcv 2308 | . . . . . . . 8 | |
7 | nfsbc1v 2969 | . . . . . . . 8 | |
8 | 6, 7 | nfsbc 2971 | . . . . . . 7 |
9 | 8 | 19.41 1674 | . . . . . 6 |
10 | 5, 9 | bitr3i 185 | . . . . 5 |
11 | 10 | exbii 1593 | . . . 4 |
12 | elvv 4666 | . . . . 5 | |
13 | 12 | anbi1i 454 | . . . 4 |
14 | 2, 11, 13 | 3bitr4i 211 | . . 3 |
15 | 14 | abbii 2282 | . 2 |
16 | df-opab 4044 | . 2 | |
17 | df-rab 2453 | . 2 | |
18 | 15, 16, 17 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 cab 2151 crab 2448 cvv 2726 wsbc 2951 cop 3579 copab 4042 cxp 4602 cfv 5188 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |