ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfopab2 Unicode version

Theorem dfopab2 6335
Description: A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfopab2  |-  { <. x ,  y >.  |  ph }  =  { z  e.  ( _V  X.  _V )  |  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z
)  /  y ]. ph }
Distinct variable groups:    ph, z    x, y, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem dfopab2
StepHypRef Expression
1 nfsbc1v 3047 . . . . 5  |-  F/ x [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph
2119.41 1732 . . . 4  |-  ( E. x ( E. y 
z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph )  <->  ( E. x E. y  z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph ) )
3 sbcopeq1a 6333 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph  <->  ph ) )
43pm5.32i 454 . . . . . . 7  |-  ( ( z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph )  <->  ( z  =  <. x ,  y
>.  /\  ph ) )
54exbii 1651 . . . . . 6  |-  ( E. y ( z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph )  <->  E. y ( z  =  <. x ,  y
>.  /\  ph ) )
6 nfcv 2372 . . . . . . . 8  |-  F/_ y
( 1st `  z
)
7 nfsbc1v 3047 . . . . . . . 8  |-  F/ y
[. ( 2nd `  z
)  /  y ]. ph
86, 7nfsbc 3049 . . . . . . 7  |-  F/ y
[. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph
9819.41 1732 . . . . . 6  |-  ( E. y ( z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph )  <->  ( E. y 
z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) )
105, 9bitr3i 186 . . . . 5  |-  ( E. y ( z  = 
<. x ,  y >.  /\  ph )  <->  ( E. y  z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) )
1110exbii 1651 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph ) 
<->  E. x ( E. y  z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) )
12 elvv 4781 . . . . 5  |-  ( z  e.  ( _V  X.  _V )  <->  E. x E. y 
z  =  <. x ,  y >. )
1312anbi1i 458 . . . 4  |-  ( ( z  e.  ( _V 
X.  _V )  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph )  <->  ( E. x E. y  z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph ) )
142, 11, 133bitr4i 212 . . 3  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph ) 
<->  ( z  e.  ( _V  X.  _V )  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph ) )
1514abbii 2345 . 2  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  =  { z  |  ( z  e.  ( _V 
X.  _V )  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) }
16 df-opab 4146 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
17 df-rab 2517 . 2  |-  { z  e.  ( _V  X.  _V )  |  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph }  =  {
z  |  ( z  e.  ( _V  X.  _V )  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) }
1815, 16, 173eqtr4i 2260 1  |-  { <. x ,  y >.  |  ph }  =  { z  e.  ( _V  X.  _V )  |  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z
)  /  y ]. ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   {crab 2512   _Vcvv 2799   [.wsbc 3028   <.cop 3669   {copab 4144    X. cxp 4717   ` cfv 5318   1stc1st 6284   2ndc2nd 6285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-1st 6286  df-2nd 6287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator