ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nordeq GIF version

Theorem nordeq 4592
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
nordeq ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)

Proof of Theorem nordeq
StepHypRef Expression
1 ordirr 4590 . . . 4 (Ord 𝐴 → ¬ 𝐴𝐴)
2 eleq1 2268 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴𝐵𝐴))
32notbid 669 . . . 4 (𝐴 = 𝐵 → (¬ 𝐴𝐴 ↔ ¬ 𝐵𝐴))
41, 3syl5ibcom 155 . . 3 (Ord 𝐴 → (𝐴 = 𝐵 → ¬ 𝐵𝐴))
54necon2ad 2433 . 2 (Ord 𝐴 → (𝐵𝐴𝐴𝐵))
65imp 124 1 ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wcel 2176  wne 2376  Ord word 4409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-v 2774  df-dif 3168  df-sn 3639
This theorem is referenced by:  phplem1  6949
  Copyright terms: Public domain W3C validator