| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibcom | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrid.1 |
|
| imbitrid.2 |
|
| Ref | Expression |
|---|---|
| syl5ibcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 |
. . 3
| |
| 2 | imbitrid.2 |
. . 3
| |
| 3 | 1, 2 | imbitrid 154 |
. 2
|
| 4 | 3 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpcd 159 mob2 2983 rmob 3122 preqr1g 3843 issod 4409 sotritrieq 4415 nsuceq0g 4508 suctr 4511 nordeq 4635 suc11g 4648 iss 5050 poirr2 5120 xp11m 5166 tz6.12c 5656 fnbrfvb 5671 fvelimab 5689 foeqcnvco 5913 f1eqcocnv 5914 acexmidlemcase 5995 nna0r 6622 nnawordex 6673 ectocld 6746 ecoptocl 6767 mapsn 6835 eqeng 6915 fopwdom 6993 ordiso 7199 ltexnqq 7591 nsmallnqq 7595 nqprloc 7728 aptiprleml 7822 map2psrprg 7988 0re 8142 lttri3 8222 0cnALT 8332 reapti 8722 recnz 9536 zneo 9544 uzn0 9734 flqidz 10501 ceilqidz 10533 modqid2 10568 modqmuladdnn0 10585 frec2uzrand 10622 frecuzrdgtcl 10629 seq3id 10742 seq3z 10745 facdiv 10955 facwordi 10957 wrdnval 11097 wrdl1s1 11158 maxleb 11722 fsumf1o 11896 dvdsnegb 12314 odd2np1lem 12378 odd2np1 12379 ltoddhalfle 12399 halfleoddlt 12400 opoe 12401 omoe 12402 opeo 12403 omeo 12404 gcddiv 12535 gcdzeq 12538 dvdssqim 12540 lcmgcdeq 12600 coprmdvds2 12610 rpmul 12615 divgcdcoprmex 12619 cncongr2 12621 dvdsprm 12654 coprm 12661 prmdvdsexp 12665 prmdiv 12752 pythagtriplem19 12800 pc2dvds 12848 pcadd 12858 prmpwdvds 12873 exmidunben 12992 intopsn 13395 ismgmid 13405 imasmnd2 13480 isgrpid2 13568 isgrpinv 13582 dfgrp3mlem 13626 imasgrp2 13642 imasrng 13914 imasring 14022 dvdsrcl2 14057 dvdsrtr 14059 dvdsrmul1 14060 lspsneq0 14384 dvdsrzring 14561 znunit 14617 baspartn 14718 bastop 14743 isopn3 14793 lgsdir 15708 lgsne0 15711 lgsquadlem3 15752 uhgrm 15872 upgrfnen 15892 umgrfnen 15902 bj-peano4 16276 sbthomlem 16352 |
| Copyright terms: Public domain | W3C validator |