| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibcom | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrid.1 |
|
| imbitrid.2 |
|
| Ref | Expression |
|---|---|
| syl5ibcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 |
. . 3
| |
| 2 | imbitrid.2 |
. . 3
| |
| 3 | 1, 2 | imbitrid 154 |
. 2
|
| 4 | 3 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpcd 159 mob2 2952 rmob 3090 preqr1g 3806 issod 4365 sotritrieq 4371 nsuceq0g 4464 suctr 4467 nordeq 4591 suc11g 4604 iss 5004 poirr2 5074 xp11m 5120 tz6.12c 5605 fnbrfvb 5618 fvelimab 5634 foeqcnvco 5858 f1eqcocnv 5859 acexmidlemcase 5938 nna0r 6563 nnawordex 6614 ectocld 6687 ecoptocl 6708 mapsn 6776 eqeng 6856 fopwdom 6932 ordiso 7137 ltexnqq 7520 nsmallnqq 7524 nqprloc 7657 aptiprleml 7751 map2psrprg 7917 0re 8071 lttri3 8151 0cnALT 8261 reapti 8651 recnz 9465 zneo 9473 uzn0 9663 flqidz 10427 ceilqidz 10459 modqid2 10494 modqmuladdnn0 10511 frec2uzrand 10548 frecuzrdgtcl 10555 seq3id 10668 seq3z 10671 facdiv 10881 facwordi 10883 wrdnval 11022 wrdl1s1 11082 maxleb 11498 fsumf1o 11672 dvdsnegb 12090 odd2np1lem 12154 odd2np1 12155 ltoddhalfle 12175 halfleoddlt 12176 opoe 12177 omoe 12178 opeo 12179 omeo 12180 gcddiv 12311 gcdzeq 12314 dvdssqim 12316 lcmgcdeq 12376 coprmdvds2 12386 rpmul 12391 divgcdcoprmex 12395 cncongr2 12397 dvdsprm 12430 coprm 12437 prmdvdsexp 12441 prmdiv 12528 pythagtriplem19 12576 pc2dvds 12624 pcadd 12634 prmpwdvds 12649 exmidunben 12768 intopsn 13170 ismgmid 13180 imasmnd2 13255 isgrpid2 13343 isgrpinv 13357 dfgrp3mlem 13401 imasgrp2 13417 imasrng 13689 imasring 13797 dvdsrcl2 13832 dvdsrtr 13834 dvdsrmul1 13835 lspsneq0 14159 dvdsrzring 14336 znunit 14392 baspartn 14493 bastop 14518 isopn3 14568 lgsdir 15483 lgsne0 15486 lgsquadlem3 15527 bj-peano4 15853 sbthomlem 15926 |
| Copyright terms: Public domain | W3C validator |