| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibcom | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrid.1 |
|
| imbitrid.2 |
|
| Ref | Expression |
|---|---|
| syl5ibcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 |
. . 3
| |
| 2 | imbitrid.2 |
. . 3
| |
| 3 | 1, 2 | imbitrid 154 |
. 2
|
| 4 | 3 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpcd 159 mob2 2960 rmob 3099 preqr1g 3820 issod 4384 sotritrieq 4390 nsuceq0g 4483 suctr 4486 nordeq 4610 suc11g 4623 iss 5024 poirr2 5094 xp11m 5140 tz6.12c 5629 fnbrfvb 5642 fvelimab 5658 foeqcnvco 5882 f1eqcocnv 5883 acexmidlemcase 5962 nna0r 6587 nnawordex 6638 ectocld 6711 ecoptocl 6732 mapsn 6800 eqeng 6880 fopwdom 6958 ordiso 7164 ltexnqq 7556 nsmallnqq 7560 nqprloc 7693 aptiprleml 7787 map2psrprg 7953 0re 8107 lttri3 8187 0cnALT 8297 reapti 8687 recnz 9501 zneo 9509 uzn0 9699 flqidz 10466 ceilqidz 10498 modqid2 10533 modqmuladdnn0 10550 frec2uzrand 10587 frecuzrdgtcl 10594 seq3id 10707 seq3z 10710 facdiv 10920 facwordi 10922 wrdnval 11061 wrdl1s1 11122 maxleb 11642 fsumf1o 11816 dvdsnegb 12234 odd2np1lem 12298 odd2np1 12299 ltoddhalfle 12319 halfleoddlt 12320 opoe 12321 omoe 12322 opeo 12323 omeo 12324 gcddiv 12455 gcdzeq 12458 dvdssqim 12460 lcmgcdeq 12520 coprmdvds2 12530 rpmul 12535 divgcdcoprmex 12539 cncongr2 12541 dvdsprm 12574 coprm 12581 prmdvdsexp 12585 prmdiv 12672 pythagtriplem19 12720 pc2dvds 12768 pcadd 12778 prmpwdvds 12793 exmidunben 12912 intopsn 13314 ismgmid 13324 imasmnd2 13399 isgrpid2 13487 isgrpinv 13501 dfgrp3mlem 13545 imasgrp2 13561 imasrng 13833 imasring 13941 dvdsrcl2 13976 dvdsrtr 13978 dvdsrmul1 13979 lspsneq0 14303 dvdsrzring 14480 znunit 14536 baspartn 14637 bastop 14662 isopn3 14712 lgsdir 15627 lgsne0 15630 lgsquadlem3 15671 uhgrm 15789 upgrfnen 15809 umgrfnen 15819 bj-peano4 16090 sbthomlem 16166 |
| Copyright terms: Public domain | W3C validator |