Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ibcom | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
Ref | Expression |
---|---|
syl5ib.1 | |
syl5ib.2 |
Ref | Expression |
---|---|
syl5ibcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ib.1 | . . 3 | |
2 | syl5ib.2 | . . 3 | |
3 | 1, 2 | syl5ib 153 | . 2 |
4 | 3 | com12 30 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimpcd 158 mob2 2888 rmob 3025 preqr1g 3725 issod 4274 sotritrieq 4280 nsuceq0g 4373 suctr 4376 nordeq 4497 suc11g 4510 iss 4905 poirr2 4971 xp11m 5017 tz6.12c 5491 fnbrfvb 5502 fvelimab 5517 foeqcnvco 5731 f1eqcocnv 5732 acexmidlemcase 5809 nna0r 6414 nnawordex 6464 ectocld 6535 ecoptocl 6556 mapsn 6624 eqeng 6700 fopwdom 6770 ordiso 6966 ltexnqq 7307 nsmallnqq 7311 nqprloc 7444 aptiprleml 7538 map2psrprg 7704 0re 7857 lttri3 7936 0cnALT 8044 reapti 8433 recnz 9236 zneo 9244 uzn0 9433 flqidz 10163 ceilqidz 10193 modqid2 10228 modqmuladdnn0 10245 frec2uzrand 10282 frecuzrdgtcl 10289 seq3id 10385 seq3z 10388 facdiv 10589 facwordi 10591 maxleb 11093 fsumf1o 11264 dvdsnegb 11677 odd2np1lem 11736 odd2np1 11737 ltoddhalfle 11757 halfleoddlt 11758 opoe 11759 omoe 11760 opeo 11761 omeo 11762 gcddiv 11875 gcdzeq 11878 dvdssqim 11880 lcmgcdeq 11932 coprmdvds2 11942 rpmul 11947 divgcdcoprmex 11951 cncongr2 11953 dvdsprm 11985 coprm 11990 prmdvdsexp 11994 exmidunben 12114 baspartn 12395 bastop 12422 isopn3 12472 bj-peano4 13476 sbthomlem 13545 |
Copyright terms: Public domain | W3C validator |