![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5ibcom | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
Ref | Expression |
---|---|
imbitrid.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
imbitrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5ibcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrid.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imbitrid.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | imbitrid 154 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | com12 30 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpcd 159 mob2 2941 rmob 3079 preqr1g 3793 issod 4351 sotritrieq 4357 nsuceq0g 4450 suctr 4453 nordeq 4577 suc11g 4590 iss 4989 poirr2 5059 xp11m 5105 tz6.12c 5585 fnbrfvb 5598 fvelimab 5614 foeqcnvco 5834 f1eqcocnv 5835 acexmidlemcase 5914 nna0r 6533 nnawordex 6584 ectocld 6657 ecoptocl 6678 mapsn 6746 eqeng 6822 fopwdom 6894 ordiso 7097 ltexnqq 7470 nsmallnqq 7474 nqprloc 7607 aptiprleml 7701 map2psrprg 7867 0re 8021 lttri3 8101 0cnALT 8211 reapti 8600 recnz 9413 zneo 9421 uzn0 9611 flqidz 10358 ceilqidz 10390 modqid2 10425 modqmuladdnn0 10442 frec2uzrand 10479 frecuzrdgtcl 10486 seq3id 10599 seq3z 10602 facdiv 10812 facwordi 10814 wrdnval 10947 maxleb 11363 fsumf1o 11536 dvdsnegb 11954 odd2np1lem 12016 odd2np1 12017 ltoddhalfle 12037 halfleoddlt 12038 opoe 12039 omoe 12040 opeo 12041 omeo 12042 gcddiv 12159 gcdzeq 12162 dvdssqim 12164 lcmgcdeq 12224 coprmdvds2 12234 rpmul 12239 divgcdcoprmex 12243 cncongr2 12245 dvdsprm 12278 coprm 12285 prmdvdsexp 12289 prmdiv 12376 pythagtriplem19 12423 pc2dvds 12471 pcadd 12481 prmpwdvds 12496 exmidunben 12586 intopsn 12953 ismgmid 12963 isgrpid2 13115 isgrpinv 13129 dfgrp3mlem 13173 imasgrp2 13183 imasrng 13455 imasring 13563 dvdsrcl2 13598 dvdsrtr 13600 dvdsrmul1 13601 lspsneq0 13925 dvdsrzring 14102 znunit 14158 baspartn 14229 bastop 14254 isopn3 14304 lgsdir 15192 lgsne0 15195 lgsquadlem3 15236 bj-peano4 15517 sbthomlem 15585 |
Copyright terms: Public domain | W3C validator |