| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibcom | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrid.1 |
|
| imbitrid.2 |
|
| Ref | Expression |
|---|---|
| syl5ibcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 |
. . 3
| |
| 2 | imbitrid.2 |
. . 3
| |
| 3 | 1, 2 | imbitrid 154 |
. 2
|
| 4 | 3 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpcd 159 mob2 2944 rmob 3082 preqr1g 3797 issod 4355 sotritrieq 4361 nsuceq0g 4454 suctr 4457 nordeq 4581 suc11g 4594 iss 4993 poirr2 5063 xp11m 5109 tz6.12c 5591 fnbrfvb 5604 fvelimab 5620 foeqcnvco 5840 f1eqcocnv 5841 acexmidlemcase 5920 nna0r 6545 nnawordex 6596 ectocld 6669 ecoptocl 6690 mapsn 6758 eqeng 6834 fopwdom 6906 ordiso 7111 ltexnqq 7494 nsmallnqq 7498 nqprloc 7631 aptiprleml 7725 map2psrprg 7891 0re 8045 lttri3 8125 0cnALT 8235 reapti 8625 recnz 9438 zneo 9446 uzn0 9636 flqidz 10395 ceilqidz 10427 modqid2 10462 modqmuladdnn0 10479 frec2uzrand 10516 frecuzrdgtcl 10523 seq3id 10636 seq3z 10639 facdiv 10849 facwordi 10851 wrdnval 10984 maxleb 11400 fsumf1o 11574 dvdsnegb 11992 odd2np1lem 12056 odd2np1 12057 ltoddhalfle 12077 halfleoddlt 12078 opoe 12079 omoe 12080 opeo 12081 omeo 12082 gcddiv 12213 gcdzeq 12216 dvdssqim 12218 lcmgcdeq 12278 coprmdvds2 12288 rpmul 12293 divgcdcoprmex 12297 cncongr2 12299 dvdsprm 12332 coprm 12339 prmdvdsexp 12343 prmdiv 12430 pythagtriplem19 12478 pc2dvds 12526 pcadd 12536 prmpwdvds 12551 exmidunben 12670 intopsn 13071 ismgmid 13081 imasmnd2 13156 isgrpid2 13244 isgrpinv 13258 dfgrp3mlem 13302 imasgrp2 13318 imasrng 13590 imasring 13698 dvdsrcl2 13733 dvdsrtr 13735 dvdsrmul1 13736 lspsneq0 14060 dvdsrzring 14237 znunit 14293 baspartn 14394 bastop 14419 isopn3 14469 lgsdir 15384 lgsne0 15387 lgsquadlem3 15428 bj-peano4 15709 sbthomlem 15782 |
| Copyright terms: Public domain | W3C validator |