![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nzrring | GIF version |
Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
Ref | Expression |
---|---|
nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nzr 13676 | . . 3 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
2 | 1 | ssrab3 3265 | . 2 ⊢ NzRing ⊆ Ring |
3 | 2 | sseli 3175 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ≠ wne 2364 ‘cfv 5254 0gc0g 12867 1rcur 13455 Ringcrg 13492 NzRingcnzr 13675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-in 3159 df-ss 3166 df-nzr 13676 |
This theorem is referenced by: nzrunit 13684 lringring 13690 rrgnz 13764 domnring 13767 |
Copyright terms: Public domain | W3C validator |