ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nzrring GIF version

Theorem nzrring 13739
Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.)
Assertion
Ref Expression
nzrring (𝑅 ∈ NzRing → 𝑅 ∈ Ring)

Proof of Theorem nzrring
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-nzr 13736 . . 3 NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
21ssrab3 3269 . 2 NzRing ⊆ Ring
32sseli 3179 1 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wne 2367  cfv 5258  0gc0g 12927  1rcur 13515  Ringcrg 13552  NzRingcnzr 13735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-in 3163  df-ss 3170  df-nzr 13736
This theorem is referenced by:  nzrunit  13744  lringring  13750  rrgnz  13824  domnring  13827
  Copyright terms: Public domain W3C validator