| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nzrring | GIF version | ||
| Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nzr 13812 | . . 3 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
| 2 | 1 | ssrab3 3270 | . 2 ⊢ NzRing ⊆ Ring |
| 3 | 2 | sseli 3180 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ≠ wne 2367 ‘cfv 5259 0gc0g 12958 1rcur 13591 Ringcrg 13628 NzRingcnzr 13811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 df-nzr 13812 |
| This theorem is referenced by: nzrunit 13820 lringring 13826 rrgnz 13900 domnring 13903 |
| Copyright terms: Public domain | W3C validator |