ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnzr2 Unicode version

Theorem isnzr2 14016
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
isnzr2.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
isnzr2  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  2o  ~<_  B ) )

Proof of Theorem isnzr2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
2 eqid 2206 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
31, 2isnzr 14013 . 2  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  ( 1r `  R
)  =/=  ( 0g
`  R ) ) )
4 isnzr2.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
54, 1ringidcl 13852 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
65adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  ( 1r `  R )  e.  B )
74, 2ring0cl 13853 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  B )
87adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  ( 0g `  R )  e.  B )
9 simpr 110 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  ( 1r `  R )  =/=  ( 0g `  R
) )
10 df-ne 2378 . . . . . . . . 9  |-  ( x  =/=  y  <->  -.  x  =  y )
11 neeq1 2390 . . . . . . . . 9  |-  ( x  =  ( 1r `  R )  ->  (
x  =/=  y  <->  ( 1r `  R )  =/=  y
) )
1210, 11bitr3id 194 . . . . . . . 8  |-  ( x  =  ( 1r `  R )  ->  ( -.  x  =  y  <->  ( 1r `  R )  =/=  y ) )
13 neeq2 2391 . . . . . . . 8  |-  ( y  =  ( 0g `  R )  ->  (
( 1r `  R
)  =/=  y  <->  ( 1r `  R )  =/=  ( 0g `  R ) ) )
1412, 13rspc2ev 2896 . . . . . . 7  |-  ( ( ( 1r `  R
)  e.  B  /\  ( 0g `  R )  e.  B  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  E. x  e.  B  E. y  e.  B  -.  x  =  y )
156, 8, 9, 14syl3anc 1250 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  E. x  e.  B  E. y  e.  B  -.  x  =  y )
1615ex 115 . . . . 5  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  ( 0g `  R )  ->  E. x  e.  B  E. y  e.  B  -.  x  =  y ) )
174, 1, 2ring1eq0 13880 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
( 1r `  R
)  =  ( 0g
`  R )  ->  x  =  y )
)
18173expb 1207 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( 1r `  R )  =  ( 0g `  R
)  ->  x  =  y ) )
1918necon3bd 2420 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( -.  x  =  y  ->  ( 1r `  R )  =/=  ( 0g `  R ) ) )
2019rexlimdvva 2632 . . . . 5  |-  ( R  e.  Ring  ->  ( E. x  e.  B  E. y  e.  B  -.  x  =  y  ->  ( 1r `  R )  =/=  ( 0g `  R ) ) )
2116, 20impbid 129 . . . 4  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  ( 0g `  R )  <->  E. x  e.  B  E. y  e.  B  -.  x  =  y ) )
22 simpl 109 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  x  e.  B )
23 simprl 529 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  y  e.  B )
24 simprr 531 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  -.  x  =  y )
2522, 23, 24enpr2d 6924 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  { x ,  y }  ~~  2o )
2625adantl 277 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) ) )  ->  { x ,  y }  ~~  2o )
2726ensymd 6887 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) ) )  ->  2o  ~~  { x ,  y } )
28 basfn 12960 . . . . . . . . . . . . 13  |-  Base  Fn  _V
29 elex 2785 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  R  e. 
_V )
30 funfvex 5605 . . . . . . . . . . . . . 14  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
3130funfni 5384 . . . . . . . . . . . . 13  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
3228, 29, 31sylancr 414 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
334, 32eqeltrid 2293 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  B  e. 
_V )
34 ssdomg 6882 . . . . . . . . . . 11  |-  ( B  e.  _V  ->  ( { x ,  y }  C_  B  ->  { x ,  y }  ~<_  B ) )
3533, 34syl 14 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( { x ,  y } 
C_  B  ->  { x ,  y }  ~<_  B ) )
3622, 23prssd 3797 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  { x ,  y }  C_  B )
3735, 36impel 280 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) ) )  ->  { x ,  y }  ~<_  B )
38 endomtr 6894 . . . . . . . . 9  |-  ( ( 2o  ~~  { x ,  y }  /\  { x ,  y }  ~<_  B )  ->  2o  ~<_  B )
3927, 37, 38syl2anc 411 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) ) )  ->  2o 
~<_  B )
4039anassrs 400 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  x  e.  B )  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  2o  ~<_  B )
4140rexlimdvaa 2625 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  ( E. y  e.  B  -.  x  =  y  ->  2o  ~<_  B ) )
4241rexlimdva 2624 . . . . 5  |-  ( R  e.  Ring  ->  ( E. x  e.  B  E. y  e.  B  -.  x  =  y  ->  2o  ~<_  B ) )
43 2dom 6910 . . . . 5  |-  ( 2o  ~<_  B  ->  E. x  e.  B  E. y  e.  B  -.  x  =  y )
4442, 43impbid1 142 . . . 4  |-  ( R  e.  Ring  ->  ( E. x  e.  B  E. y  e.  B  -.  x  =  y  <->  2o  ~<_  B ) )
4521, 44bitrd 188 . . 3  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  ( 0g `  R )  <->  2o  ~<_  B ) )
4645pm5.32i 454 . 2  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  <->  ( R  e.  Ring  /\  2o  ~<_  B ) )
473, 46bitri 184 1  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  2o  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    =/= wne 2377   E.wrex 2486   _Vcvv 2773    C_ wss 3170   {cpr 3638   class class class wbr 4050    Fn wfn 5274   ` cfv 5279   2oc2o 6508    ~~ cen 6837    ~<_ cdom 6838   Basecbs 12902   0gc0g 13158   1rcur 13791   Ringcrg 13828  NzRingcnzr 14011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-suc 4425  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1o 6514  df-2o 6515  df-er 6632  df-en 6840  df-dom 6841  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-plusg 12992  df-mulr 12993  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-grp 13405  df-minusg 13406  df-mgp 13753  df-ur 13792  df-ring 13830  df-nzr 14012
This theorem is referenced by:  znidom  14489  znidomb  14490
  Copyright terms: Public domain W3C validator