ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnzr2 Unicode version

Theorem isnzr2 14156
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
isnzr2.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
isnzr2  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  2o  ~<_  B ) )

Proof of Theorem isnzr2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
2 eqid 2229 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
31, 2isnzr 14153 . 2  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  ( 1r `  R
)  =/=  ( 0g
`  R ) ) )
4 isnzr2.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
54, 1ringidcl 13991 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
65adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  ( 1r `  R )  e.  B )
74, 2ring0cl 13992 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  B )
87adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  ( 0g `  R )  e.  B )
9 simpr 110 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  ( 1r `  R )  =/=  ( 0g `  R
) )
10 df-ne 2401 . . . . . . . . 9  |-  ( x  =/=  y  <->  -.  x  =  y )
11 neeq1 2413 . . . . . . . . 9  |-  ( x  =  ( 1r `  R )  ->  (
x  =/=  y  <->  ( 1r `  R )  =/=  y
) )
1210, 11bitr3id 194 . . . . . . . 8  |-  ( x  =  ( 1r `  R )  ->  ( -.  x  =  y  <->  ( 1r `  R )  =/=  y ) )
13 neeq2 2414 . . . . . . . 8  |-  ( y  =  ( 0g `  R )  ->  (
( 1r `  R
)  =/=  y  <->  ( 1r `  R )  =/=  ( 0g `  R ) ) )
1412, 13rspc2ev 2922 . . . . . . 7  |-  ( ( ( 1r `  R
)  e.  B  /\  ( 0g `  R )  e.  B  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  E. x  e.  B  E. y  e.  B  -.  x  =  y )
156, 8, 9, 14syl3anc 1271 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  E. x  e.  B  E. y  e.  B  -.  x  =  y )
1615ex 115 . . . . 5  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  ( 0g `  R )  ->  E. x  e.  B  E. y  e.  B  -.  x  =  y ) )
174, 1, 2ring1eq0 14019 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
( 1r `  R
)  =  ( 0g
`  R )  ->  x  =  y )
)
18173expb 1228 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( 1r `  R )  =  ( 0g `  R
)  ->  x  =  y ) )
1918necon3bd 2443 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( -.  x  =  y  ->  ( 1r `  R )  =/=  ( 0g `  R ) ) )
2019rexlimdvva 2656 . . . . 5  |-  ( R  e.  Ring  ->  ( E. x  e.  B  E. y  e.  B  -.  x  =  y  ->  ( 1r `  R )  =/=  ( 0g `  R ) ) )
2116, 20impbid 129 . . . 4  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  ( 0g `  R )  <->  E. x  e.  B  E. y  e.  B  -.  x  =  y ) )
22 simpl 109 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  x  e.  B )
23 simprl 529 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  y  e.  B )
24 simprr 531 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  -.  x  =  y )
2522, 23, 24enpr2d 6980 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  { x ,  y }  ~~  2o )
2625adantl 277 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) ) )  ->  { x ,  y }  ~~  2o )
2726ensymd 6943 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) ) )  ->  2o  ~~  { x ,  y } )
28 basfn 13099 . . . . . . . . . . . . 13  |-  Base  Fn  _V
29 elex 2811 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  R  e. 
_V )
30 funfvex 5646 . . . . . . . . . . . . . 14  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
3130funfni 5423 . . . . . . . . . . . . 13  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
3228, 29, 31sylancr 414 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
334, 32eqeltrid 2316 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  B  e. 
_V )
34 ssdomg 6938 . . . . . . . . . . 11  |-  ( B  e.  _V  ->  ( { x ,  y }  C_  B  ->  { x ,  y }  ~<_  B ) )
3533, 34syl 14 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( { x ,  y } 
C_  B  ->  { x ,  y }  ~<_  B ) )
3622, 23prssd 3827 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  { x ,  y }  C_  B )
3735, 36impel 280 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) ) )  ->  { x ,  y }  ~<_  B )
38 endomtr 6950 . . . . . . . . 9  |-  ( ( 2o  ~~  { x ,  y }  /\  { x ,  y }  ~<_  B )  ->  2o  ~<_  B )
3927, 37, 38syl2anc 411 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  ( y  e.  B  /\  -.  x  =  y ) ) )  ->  2o 
~<_  B )
4039anassrs 400 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  x  e.  B )  /\  ( y  e.  B  /\  -.  x  =  y ) )  ->  2o  ~<_  B )
4140rexlimdvaa 2649 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  ( E. y  e.  B  -.  x  =  y  ->  2o  ~<_  B ) )
4241rexlimdva 2648 . . . . 5  |-  ( R  e.  Ring  ->  ( E. x  e.  B  E. y  e.  B  -.  x  =  y  ->  2o  ~<_  B ) )
43 2dom 6966 . . . . 5  |-  ( 2o  ~<_  B  ->  E. x  e.  B  E. y  e.  B  -.  x  =  y )
4442, 43impbid1 142 . . . 4  |-  ( R  e.  Ring  ->  ( E. x  e.  B  E. y  e.  B  -.  x  =  y  <->  2o  ~<_  B ) )
4521, 44bitrd 188 . . 3  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  ( 0g `  R )  <->  2o  ~<_  B ) )
4645pm5.32i 454 . 2  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  <->  ( R  e.  Ring  /\  2o  ~<_  B ) )
473, 46bitri 184 1  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  2o  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    =/= wne 2400   E.wrex 2509   _Vcvv 2799    C_ wss 3197   {cpr 3667   class class class wbr 4083    Fn wfn 5313   ` cfv 5318   2oc2o 6562    ~~ cen 6893    ~<_ cdom 6894   Basecbs 13040   0gc0g 13297   1rcur 13930   Ringcrg 13967  NzRingcnzr 14151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-dom 6897  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-mgp 13892  df-ur 13931  df-ring 13969  df-nzr 14152
This theorem is referenced by:  znidom  14629  znidomb  14630
  Copyright terms: Public domain W3C validator