ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nzrnz Unicode version

Theorem nzrnz 13492
Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o  |-  .1.  =  ( 1r `  R )
isnzr.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
nzrnz  |-  ( R  e. NzRing  ->  .1.  =/=  .0.  )

Proof of Theorem nzrnz
StepHypRef Expression
1 isnzr.o . . 3  |-  .1.  =  ( 1r `  R )
2 isnzr.z . . 3  |-  .0.  =  ( 0g `  R )
31, 2isnzr 13491 . 2  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  .1.  =/=  .0.  )
)
43simprbi 275 1  |-  ( R  e. NzRing  ->  .1.  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2159    =/= wne 2359   ` cfv 5230   0gc0g 12726   1rcur 13273   Ringcrg 13310  NzRingcnzr 13489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-rex 2473  df-rab 2476  df-v 2753  df-un 3147  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-iota 5192  df-fv 5238  df-nzr 13490
This theorem is referenced by:  nzrunit  13495  lringnz  13502  subrgnzr  13549
  Copyright terms: Public domain W3C validator