| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nzrnz | Unicode version | ||
| Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o |
|
| isnzr.z |
|
| Ref | Expression |
|---|---|
| nzrnz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr.o |
. . 3
| |
| 2 | isnzr.z |
. . 3
| |
| 3 | 1, 2 | isnzr 14018 |
. 2
|
| 4 | 3 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-nzr 14017 |
| This theorem is referenced by: nzrunit 14025 lringnz 14032 subrgnzr 14079 rrgnz 14105 |
| Copyright terms: Public domain | W3C validator |