ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordon Unicode version

Theorem ordon 4518
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon  |-  Ord  On

Proof of Theorem ordon
StepHypRef Expression
1 tron 4413 . 2  |-  Tr  On
2 df-on 4399 . . . . 5  |-  On  =  { x  |  Ord  x }
32abeq2i 2304 . . . 4  |-  ( x  e.  On  <->  Ord  x )
4 ordtr 4409 . . . 4  |-  ( Ord  x  ->  Tr  x
)
53, 4sylbi 121 . . 3  |-  ( x  e.  On  ->  Tr  x )
65rgen 2547 . 2  |-  A. x  e.  On  Tr  x
7 dford3 4398 . 2  |-  ( Ord 
On 
<->  ( Tr  On  /\  A. x  e.  On  Tr  x ) )
81, 6, 7mpbir2an 944 1  |-  Ord  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   A.wral 2472   Tr wtr 4127   Ord word 4393   Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399
This theorem is referenced by:  ssorduni  4519  limon  4545  onprc  4584  tfri1dALT  6404  rdgon  6439
  Copyright terms: Public domain W3C validator