ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordon Unicode version

Theorem ordon 4534
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon  |-  Ord  On

Proof of Theorem ordon
StepHypRef Expression
1 tron 4429 . 2  |-  Tr  On
2 df-on 4415 . . . . 5  |-  On  =  { x  |  Ord  x }
32abeq2i 2316 . . . 4  |-  ( x  e.  On  <->  Ord  x )
4 ordtr 4425 . . . 4  |-  ( Ord  x  ->  Tr  x
)
53, 4sylbi 121 . . 3  |-  ( x  e.  On  ->  Tr  x )
65rgen 2559 . 2  |-  A. x  e.  On  Tr  x
7 dford3 4414 . 2  |-  ( Ord 
On 
<->  ( Tr  On  /\  A. x  e.  On  Tr  x ) )
81, 6, 7mpbir2an 945 1  |-  Ord  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   A.wral 2484   Tr wtr 4142   Ord word 4409   Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415
This theorem is referenced by:  ssorduni  4535  limon  4561  onprc  4600  tfri1dALT  6437  rdgon  6472
  Copyright terms: Public domain W3C validator