ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordon Unicode version

Theorem ordon 4578
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon  |-  Ord  On

Proof of Theorem ordon
StepHypRef Expression
1 tron 4473 . 2  |-  Tr  On
2 df-on 4459 . . . . 5  |-  On  =  { x  |  Ord  x }
32abeq2i 2340 . . . 4  |-  ( x  e.  On  <->  Ord  x )
4 ordtr 4469 . . . 4  |-  ( Ord  x  ->  Tr  x
)
53, 4sylbi 121 . . 3  |-  ( x  e.  On  ->  Tr  x )
65rgen 2583 . 2  |-  A. x  e.  On  Tr  x
7 dford3 4458 . 2  |-  ( Ord 
On 
<->  ( Tr  On  /\  A. x  e.  On  Tr  x ) )
81, 6, 7mpbir2an 948 1  |-  Ord  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   A.wral 2508   Tr wtr 4182   Ord word 4453   Oncon0 4454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459
This theorem is referenced by:  ssorduni  4579  limon  4605  onprc  4644  tfri1dALT  6497  rdgon  6532
  Copyright terms: Public domain W3C validator