| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordon | Unicode version | ||
| Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| ordon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tron 4429 |
. 2
| |
| 2 | df-on 4415 |
. . . . 5
| |
| 3 | 2 | abeq2i 2316 |
. . . 4
|
| 4 | ordtr 4425 |
. . . 4
| |
| 5 | 3, 4 | sylbi 121 |
. . 3
|
| 6 | 5 | rgen 2559 |
. 2
|
| 7 | dford3 4414 |
. 2
| |
| 8 | 1, 6, 7 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-in 3172 df-ss 3179 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 |
| This theorem is referenced by: ssorduni 4535 limon 4561 onprc 4600 tfri1dALT 6437 rdgon 6472 |
| Copyright terms: Public domain | W3C validator |