| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordon | Unicode version | ||
| Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) | 
| Ref | Expression | 
|---|---|
| ordon | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tron 4417 | 
. 2
 | |
| 2 | df-on 4403 | 
. . . . 5
 | |
| 3 | 2 | abeq2i 2307 | 
. . . 4
 | 
| 4 | ordtr 4413 | 
. . . 4
 | |
| 5 | 3, 4 | sylbi 121 | 
. . 3
 | 
| 6 | 5 | rgen 2550 | 
. 2
 | 
| 7 | dford3 4402 | 
. 2
 | |
| 8 | 1, 6, 7 | mpbir2an 944 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 | 
| This theorem is referenced by: ssorduni 4523 limon 4549 onprc 4588 tfri1dALT 6409 rdgon 6444 | 
| Copyright terms: Public domain | W3C validator |