ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordon Unicode version

Theorem ordon 4552
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon  |-  Ord  On

Proof of Theorem ordon
StepHypRef Expression
1 tron 4447 . 2  |-  Tr  On
2 df-on 4433 . . . . 5  |-  On  =  { x  |  Ord  x }
32abeq2i 2318 . . . 4  |-  ( x  e.  On  <->  Ord  x )
4 ordtr 4443 . . . 4  |-  ( Ord  x  ->  Tr  x
)
53, 4sylbi 121 . . 3  |-  ( x  e.  On  ->  Tr  x )
65rgen 2561 . 2  |-  A. x  e.  On  Tr  x
7 dford3 4432 . 2  |-  ( Ord 
On 
<->  ( Tr  On  /\  A. x  e.  On  Tr  x ) )
81, 6, 7mpbir2an 945 1  |-  Ord  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   A.wral 2486   Tr wtr 4158   Ord word 4427   Oncon0 4428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433
This theorem is referenced by:  ssorduni  4553  limon  4579  onprc  4618  tfri1dALT  6460  rdgon  6495
  Copyright terms: Public domain W3C validator