ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onprc GIF version

Theorem onprc 4396
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4331), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
onprc ¬ On ∈ V

Proof of Theorem onprc
StepHypRef Expression
1 ordon 4331 . . 3 Ord On
2 ordirr 4386 . . 3 (Ord On → ¬ On ∈ On)
31, 2ax-mp 7 . 2 ¬ On ∈ On
4 elong 4224 . . 3 (On ∈ V → (On ∈ On ↔ Ord On))
51, 4mpbiri 167 . 2 (On ∈ V → On ∈ On)
63, 5mto 626 1 ¬ On ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 1445  Vcvv 2633  Ord word 4213  Oncon0 4214
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-setind 4381
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-v 2635  df-dif 3015  df-in 3019  df-ss 3026  df-sn 3472  df-uni 3676  df-tr 3959  df-iord 4217  df-on 4219
This theorem is referenced by:  sucon  4397
  Copyright terms: Public domain W3C validator