ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onprc GIF version

Theorem onprc 4529
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4463), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
onprc ¬ On ∈ V

Proof of Theorem onprc
StepHypRef Expression
1 ordon 4463 . . 3 Ord On
2 ordirr 4519 . . 3 (Ord On → ¬ On ∈ On)
31, 2ax-mp 5 . 2 ¬ On ∈ On
4 elong 4351 . . 3 (On ∈ V → (On ∈ On ↔ Ord On))
51, 4mpbiri 167 . 2 (On ∈ V → On ∈ On)
63, 5mto 652 1 ¬ On ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2136  Vcvv 2726  Ord word 4340  Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-sn 3582  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346
This theorem is referenced by:  sucon  4530
  Copyright terms: Public domain W3C validator