ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisuc Unicode version

Theorem unisuc 4504
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisuc.1  |-  A  e. 
_V
Assertion
Ref Expression
unisuc  |-  ( Tr  A  <->  U. suc  A  =  A )

Proof of Theorem unisuc
StepHypRef Expression
1 ssequn1 3374 . 2  |-  ( U. A  C_  A  <->  ( U. A  u.  A )  =  A )
2 df-tr 4183 . 2  |-  ( Tr  A  <->  U. A  C_  A
)
3 df-suc 4462 . . . . 5  |-  suc  A  =  ( A  u.  { A } )
43unieqi 3898 . . . 4  |-  U. suc  A  =  U. ( A  u.  { A }
)
5 uniun 3907 . . . 4  |-  U. ( A  u.  { A } )  =  ( U. A  u.  U. { A } )
6 unisuc.1 . . . . . 6  |-  A  e. 
_V
76unisn 3904 . . . . 5  |-  U. { A }  =  A
87uneq2i 3355 . . . 4  |-  ( U. A  u.  U. { A } )  =  ( U. A  u.  A
)
94, 5, 83eqtri 2254 . . 3  |-  U. suc  A  =  ( U. A  u.  A )
109eqeq1i 2237 . 2  |-  ( U. suc  A  =  A  <->  ( U. A  u.  A )  =  A )
111, 2, 103bitr4i 212 1  |-  ( Tr  A  <->  U. suc  A  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    u. cun 3195    C_ wss 3197   {csn 3666   U.cuni 3888   Tr wtr 4182   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-suc 4462
This theorem is referenced by:  onunisuci  4523  ordsucunielexmid  4623  tfrexlem  6480  nnsucuniel  6641
  Copyright terms: Public domain W3C validator