Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unisuc | Unicode version |
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisuc.1 |
Ref | Expression |
---|---|
unisuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 3297 | . 2 | |
2 | df-tr 4088 | . 2 | |
3 | df-suc 4356 | . . . . 5 | |
4 | 3 | unieqi 3806 | . . . 4 |
5 | uniun 3815 | . . . 4 | |
6 | unisuc.1 | . . . . . 6 | |
7 | 6 | unisn 3812 | . . . . 5 |
8 | 7 | uneq2i 3278 | . . . 4 |
9 | 4, 5, 8 | 3eqtri 2195 | . . 3 |
10 | 9 | eqeq1i 2178 | . 2 |
11 | 1, 2, 10 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wcel 2141 cvv 2730 cun 3119 wss 3121 csn 3583 cuni 3796 wtr 4087 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-suc 4356 |
This theorem is referenced by: onunisuci 4417 ordsucunielexmid 4515 tfrexlem 6313 nnsucuniel 6474 |
Copyright terms: Public domain | W3C validator |