Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unisuc | Unicode version |
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisuc.1 |
Ref | Expression |
---|---|
unisuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 3292 | . 2 | |
2 | df-tr 4081 | . 2 | |
3 | df-suc 4349 | . . . . 5 | |
4 | 3 | unieqi 3799 | . . . 4 |
5 | uniun 3808 | . . . 4 | |
6 | unisuc.1 | . . . . . 6 | |
7 | 6 | unisn 3805 | . . . . 5 |
8 | 7 | uneq2i 3273 | . . . 4 |
9 | 4, 5, 8 | 3eqtri 2190 | . . 3 |
10 | 9 | eqeq1i 2173 | . 2 |
11 | 1, 2, 10 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wcel 2136 cvv 2726 cun 3114 wss 3116 csn 3576 cuni 3789 wtr 4080 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-suc 4349 |
This theorem is referenced by: onunisuci 4410 ordsucunielexmid 4508 tfrexlem 6302 nnsucuniel 6463 |
Copyright terms: Public domain | W3C validator |