| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisuc | Unicode version | ||
| Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisuc.1 |
|
| Ref | Expression |
|---|---|
| unisuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 3343 |
. 2
| |
| 2 | df-tr 4143 |
. 2
| |
| 3 | df-suc 4418 |
. . . . 5
| |
| 4 | 3 | unieqi 3860 |
. . . 4
|
| 5 | uniun 3869 |
. . . 4
| |
| 6 | unisuc.1 |
. . . . . 6
| |
| 7 | 6 | unisn 3866 |
. . . . 5
|
| 8 | 7 | uneq2i 3324 |
. . . 4
|
| 9 | 4, 5, 8 | 3eqtri 2230 |
. . 3
|
| 10 | 9 | eqeq1i 2213 |
. 2
|
| 11 | 1, 2, 10 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-suc 4418 |
| This theorem is referenced by: onunisuci 4479 ordsucunielexmid 4579 tfrexlem 6420 nnsucuniel 6581 |
| Copyright terms: Public domain | W3C validator |