ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisuc Unicode version

Theorem unisuc 4251
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisuc.1  |-  A  e. 
_V
Assertion
Ref Expression
unisuc  |-  ( Tr  A  <->  U. suc  A  =  A )

Proof of Theorem unisuc
StepHypRef Expression
1 ssequn1 3173 . 2  |-  ( U. A  C_  A  <->  ( U. A  u.  A )  =  A )
2 df-tr 3945 . 2  |-  ( Tr  A  <->  U. A  C_  A
)
3 df-suc 4209 . . . . 5  |-  suc  A  =  ( A  u.  { A } )
43unieqi 3671 . . . 4  |-  U. suc  A  =  U. ( A  u.  { A }
)
5 uniun 3680 . . . 4  |-  U. ( A  u.  { A } )  =  ( U. A  u.  U. { A } )
6 unisuc.1 . . . . . 6  |-  A  e. 
_V
76unisn 3677 . . . . 5  |-  U. { A }  =  A
87uneq2i 3154 . . . 4  |-  ( U. A  u.  U. { A } )  =  ( U. A  u.  A
)
94, 5, 83eqtri 2113 . . 3  |-  U. suc  A  =  ( U. A  u.  A )
109eqeq1i 2096 . 2  |-  ( U. suc  A  =  A  <->  ( U. A  u.  A )  =  A )
111, 2, 103bitr4i 211 1  |-  ( Tr  A  <->  U. suc  A  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1290    e. wcel 1439   _Vcvv 2622    u. cun 3000    C_ wss 3002   {csn 3452   U.cuni 3661   Tr wtr 3944   suc csuc 4203
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-sn 3458  df-pr 3459  df-uni 3662  df-tr 3945  df-suc 4209
This theorem is referenced by:  onunisuci  4270  ordsucunielexmid  4362  tfrexlem  6115  nnsucuniel  6272
  Copyright terms: Public domain W3C validator