Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtriexmidlem | Unicode version |
Description: Lemma for decidability and ordinals. The set is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4498 or weak linearity in ordsoexmid 4539) with a proposition . Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.) |
Ref | Expression |
---|---|
ordtriexmidlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . 6 | |
2 | elrabi 2879 | . . . . . . . . 9 | |
3 | velsn 3593 | . . . . . . . . 9 | |
4 | 2, 3 | sylib 121 | . . . . . . . 8 |
5 | noel 3413 | . . . . . . . . 9 | |
6 | eleq2 2230 | . . . . . . . . 9 | |
7 | 5, 6 | mtbiri 665 | . . . . . . . 8 |
8 | 4, 7 | syl 14 | . . . . . . 7 |
9 | 8 | adantl 275 | . . . . . 6 |
10 | 1, 9 | pm2.21dd 610 | . . . . 5 |
11 | 10 | gen2 1438 | . . . 4 |
12 | dftr2 4082 | . . . 4 | |
13 | 11, 12 | mpbir 145 | . . 3 |
14 | ssrab2 3227 | . . 3 | |
15 | ord0 4369 | . . . . 5 | |
16 | ordsucim 4477 | . . . . 5 | |
17 | 15, 16 | ax-mp 5 | . . . 4 |
18 | suc0 4389 | . . . . 5 | |
19 | ordeq 4350 | . . . . 5 | |
20 | 18, 19 | ax-mp 5 | . . . 4 |
21 | 17, 20 | mpbi 144 | . . 3 |
22 | trssord 4358 | . . 3 | |
23 | 13, 14, 21, 22 | mp3an 1327 | . 2 |
24 | p0ex 4167 | . . . 4 | |
25 | 24 | rabex 4126 | . . 3 |
26 | 25 | elon 4352 | . 2 |
27 | 23, 26 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 crab 2448 wss 3116 c0 3409 csn 3576 wtr 4080 word 4340 con0 4341 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: ordtriexmid 4498 ontriexmidim 4499 ordtri2orexmid 4500 ontr2exmid 4502 onsucsssucexmid 4504 ordsoexmid 4539 0elsucexmid 4542 ordpwsucexmid 4547 unfiexmid 6883 exmidonfinlem 7149 |
Copyright terms: Public domain | W3C validator |