ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmidlem Unicode version

Theorem ordtriexmidlem 4551
Description: Lemma for decidability and ordinals. The set  { x  e.  { (/)
}  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4553 or weak linearity in ordsoexmid 4594) with a proposition  ph. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.)
Assertion
Ref Expression
ordtriexmidlem  |-  { x  e.  { (/) }  |  ph }  e.  On

Proof of Theorem ordtriexmidlem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) }  |  ph } )  ->  y  e.  z )
2 elrabi 2913 . . . . . . . . 9  |-  ( z  e.  { x  e. 
{ (/) }  |  ph }  ->  z  e.  { (/)
} )
3 velsn 3635 . . . . . . . . 9  |-  ( z  e.  { (/) }  <->  z  =  (/) )
42, 3sylib 122 . . . . . . . 8  |-  ( z  e.  { x  e. 
{ (/) }  |  ph }  ->  z  =  (/) )
5 noel 3450 . . . . . . . . 9  |-  -.  y  e.  (/)
6 eleq2 2257 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( y  e.  z  <->  y  e.  (/) ) )
75, 6mtbiri 676 . . . . . . . 8  |-  ( z  =  (/)  ->  -.  y  e.  z )
84, 7syl 14 . . . . . . 7  |-  ( z  e.  { x  e. 
{ (/) }  |  ph }  ->  -.  y  e.  z )
98adantl 277 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) }  |  ph } )  ->  -.  y  e.  z )
101, 9pm2.21dd 621 . . . . 5  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) }  |  ph } )  ->  y  e.  { x  e.  { (/)
}  |  ph }
)
1110gen2 1461 . . . 4  |-  A. y A. z ( ( y  e.  z  /\  z  e.  { x  e.  { (/)
}  |  ph }
)  ->  y  e.  { x  e.  { (/) }  |  ph } )
12 dftr2 4129 . . . 4  |-  ( Tr 
{ x  e.  { (/)
}  |  ph }  <->  A. y A. z ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) }  |  ph } )  ->  y  e.  {
x  e.  { (/) }  |  ph } ) )
1311, 12mpbir 146 . . 3  |-  Tr  {
x  e.  { (/) }  |  ph }
14 ssrab2 3264 . . 3  |-  { x  e.  { (/) }  |  ph }  C_  { (/) }
15 ord0 4422 . . . . 5  |-  Ord  (/)
16 ordsucim 4532 . . . . 5  |-  ( Ord  (/)  ->  Ord  suc  (/) )
1715, 16ax-mp 5 . . . 4  |-  Ord  suc  (/)
18 suc0 4442 . . . . 5  |-  suc  (/)  =  { (/)
}
19 ordeq 4403 . . . . 5  |-  ( suc  (/)  =  { (/) }  ->  ( Ord  suc  (/)  <->  Ord  { (/) } ) )
2018, 19ax-mp 5 . . . 4  |-  ( Ord 
suc  (/)  <->  Ord  { (/) } )
2117, 20mpbi 145 . . 3  |-  Ord  { (/)
}
22 trssord 4411 . . 3  |-  ( ( Tr  { x  e. 
{ (/) }  |  ph }  /\  { x  e. 
{ (/) }  |  ph }  C_  { (/) }  /\  Ord  { (/) } )  ->  Ord  { x  e.  { (/)
}  |  ph }
)
2313, 14, 21, 22mp3an 1348 . 2  |-  Ord  {
x  e.  { (/) }  |  ph }
24 p0ex 4217 . . . 4  |-  { (/) }  e.  _V
2524rabex 4173 . . 3  |-  { x  e.  { (/) }  |  ph }  e.  _V
2625elon 4405 . 2  |-  ( { x  e.  { (/) }  |  ph }  e.  On 
<->  Ord  { x  e. 
{ (/) }  |  ph } )
2723, 26mpbir 146 1  |-  { x  e.  { (/) }  |  ph }  e.  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   {crab 2476    C_ wss 3153   (/)c0 3446   {csn 3618   Tr wtr 4127   Ord word 4393   Oncon0 4394   suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402
This theorem is referenced by:  ordtriexmid  4553  ontriexmidim  4554  ordtri2orexmid  4555  ontr2exmid  4557  onsucsssucexmid  4559  ordsoexmid  4594  0elsucexmid  4597  ordpwsucexmid  4602  unfiexmid  6974  exmidonfinlem  7253
  Copyright terms: Public domain W3C validator