| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtriexmidlem | Unicode version | ||
| Description: Lemma for decidability
and ordinals. The set |
| Ref | Expression |
|---|---|
| ordtriexmidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . 6
| |
| 2 | elrabi 2917 |
. . . . . . . . 9
| |
| 3 | velsn 3639 |
. . . . . . . . 9
| |
| 4 | 2, 3 | sylib 122 |
. . . . . . . 8
|
| 5 | noel 3454 |
. . . . . . . . 9
| |
| 6 | eleq2 2260 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mtbiri 676 |
. . . . . . . 8
|
| 8 | 4, 7 | syl 14 |
. . . . . . 7
|
| 9 | 8 | adantl 277 |
. . . . . 6
|
| 10 | 1, 9 | pm2.21dd 621 |
. . . . 5
|
| 11 | 10 | gen2 1464 |
. . . 4
|
| 12 | dftr2 4133 |
. . . 4
| |
| 13 | 11, 12 | mpbir 146 |
. . 3
|
| 14 | ssrab2 3268 |
. . 3
| |
| 15 | ord0 4426 |
. . . . 5
| |
| 16 | ordsucim 4536 |
. . . . 5
| |
| 17 | 15, 16 | ax-mp 5 |
. . . 4
|
| 18 | suc0 4446 |
. . . . 5
| |
| 19 | ordeq 4407 |
. . . . 5
| |
| 20 | 18, 19 | ax-mp 5 |
. . . 4
|
| 21 | 17, 20 | mpbi 145 |
. . 3
|
| 22 | trssord 4415 |
. . 3
| |
| 23 | 13, 14, 21, 22 | mp3an 1348 |
. 2
|
| 24 | p0ex 4221 |
. . . 4
| |
| 25 | 24 | rabex 4177 |
. . 3
|
| 26 | 25 | elon 4409 |
. 2
|
| 27 | 23, 26 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 |
| This theorem is referenced by: ordtriexmid 4557 ontriexmidim 4558 ordtri2orexmid 4559 ontr2exmid 4561 onsucsssucexmid 4563 ordsoexmid 4598 0elsucexmid 4601 ordpwsucexmid 4606 unfiexmid 6979 exmidonfinlem 7260 |
| Copyright terms: Public domain | W3C validator |