| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtriexmidlem | Unicode version | ||
| Description: Lemma for decidability
and ordinals. The set |
| Ref | Expression |
|---|---|
| ordtriexmidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . 6
| |
| 2 | elrabi 2956 |
. . . . . . . . 9
| |
| 3 | velsn 3683 |
. . . . . . . . 9
| |
| 4 | 2, 3 | sylib 122 |
. . . . . . . 8
|
| 5 | noel 3495 |
. . . . . . . . 9
| |
| 6 | eleq2 2293 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mtbiri 679 |
. . . . . . . 8
|
| 8 | 4, 7 | syl 14 |
. . . . . . 7
|
| 9 | 8 | adantl 277 |
. . . . . 6
|
| 10 | 1, 9 | pm2.21dd 623 |
. . . . 5
|
| 11 | 10 | gen2 1496 |
. . . 4
|
| 12 | dftr2 4184 |
. . . 4
| |
| 13 | 11, 12 | mpbir 146 |
. . 3
|
| 14 | ssrab2 3309 |
. . 3
| |
| 15 | ord0 4482 |
. . . . 5
| |
| 16 | ordsucim 4592 |
. . . . 5
| |
| 17 | 15, 16 | ax-mp 5 |
. . . 4
|
| 18 | suc0 4502 |
. . . . 5
| |
| 19 | ordeq 4463 |
. . . . 5
| |
| 20 | 18, 19 | ax-mp 5 |
. . . 4
|
| 21 | 17, 20 | mpbi 145 |
. . 3
|
| 22 | trssord 4471 |
. . 3
| |
| 23 | 13, 14, 21, 22 | mp3an 1371 |
. 2
|
| 24 | p0ex 4272 |
. . . 4
| |
| 25 | 24 | rabex 4228 |
. . 3
|
| 26 | 25 | elon 4465 |
. 2
|
| 27 | 23, 26 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 |
| This theorem is referenced by: ordtriexmid 4613 ontriexmidim 4614 ordtri2orexmid 4615 ontr2exmid 4617 onsucsssucexmid 4619 ordsoexmid 4654 0elsucexmid 4657 ordpwsucexmid 4662 unfiexmid 7080 exmidonfinlem 7371 |
| Copyright terms: Public domain | W3C validator |