ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmidlem Unicode version

Theorem ordtriexmidlem 4480
Description: Lemma for decidability and ordinals. The set  { x  e.  { (/)
}  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4482 or weak linearity in ordsoexmid 4523) with a proposition  ph. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.)
Assertion
Ref Expression
ordtriexmidlem  |-  { x  e.  { (/) }  |  ph }  e.  On

Proof of Theorem ordtriexmidlem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) }  |  ph } )  ->  y  e.  z )
2 elrabi 2865 . . . . . . . . 9  |-  ( z  e.  { x  e. 
{ (/) }  |  ph }  ->  z  e.  { (/)
} )
3 velsn 3578 . . . . . . . . 9  |-  ( z  e.  { (/) }  <->  z  =  (/) )
42, 3sylib 121 . . . . . . . 8  |-  ( z  e.  { x  e. 
{ (/) }  |  ph }  ->  z  =  (/) )
5 noel 3399 . . . . . . . . 9  |-  -.  y  e.  (/)
6 eleq2 2221 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( y  e.  z  <->  y  e.  (/) ) )
75, 6mtbiri 665 . . . . . . . 8  |-  ( z  =  (/)  ->  -.  y  e.  z )
84, 7syl 14 . . . . . . 7  |-  ( z  e.  { x  e. 
{ (/) }  |  ph }  ->  -.  y  e.  z )
98adantl 275 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) }  |  ph } )  ->  -.  y  e.  z )
101, 9pm2.21dd 610 . . . . 5  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) }  |  ph } )  ->  y  e.  { x  e.  { (/)
}  |  ph }
)
1110gen2 1430 . . . 4  |-  A. y A. z ( ( y  e.  z  /\  z  e.  { x  e.  { (/)
}  |  ph }
)  ->  y  e.  { x  e.  { (/) }  |  ph } )
12 dftr2 4066 . . . 4  |-  ( Tr 
{ x  e.  { (/)
}  |  ph }  <->  A. y A. z ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) }  |  ph } )  ->  y  e.  {
x  e.  { (/) }  |  ph } ) )
1311, 12mpbir 145 . . 3  |-  Tr  {
x  e.  { (/) }  |  ph }
14 ssrab2 3213 . . 3  |-  { x  e.  { (/) }  |  ph }  C_  { (/) }
15 ord0 4353 . . . . 5  |-  Ord  (/)
16 ordsucim 4461 . . . . 5  |-  ( Ord  (/)  ->  Ord  suc  (/) )
1715, 16ax-mp 5 . . . 4  |-  Ord  suc  (/)
18 suc0 4373 . . . . 5  |-  suc  (/)  =  { (/)
}
19 ordeq 4334 . . . . 5  |-  ( suc  (/)  =  { (/) }  ->  ( Ord  suc  (/)  <->  Ord  { (/) } ) )
2018, 19ax-mp 5 . . . 4  |-  ( Ord 
suc  (/)  <->  Ord  { (/) } )
2117, 20mpbi 144 . . 3  |-  Ord  { (/)
}
22 trssord 4342 . . 3  |-  ( ( Tr  { x  e. 
{ (/) }  |  ph }  /\  { x  e. 
{ (/) }  |  ph }  C_  { (/) }  /\  Ord  { (/) } )  ->  Ord  { x  e.  { (/)
}  |  ph }
)
2313, 14, 21, 22mp3an 1319 . 2  |-  Ord  {
x  e.  { (/) }  |  ph }
24 p0ex 4151 . . . 4  |-  { (/) }  e.  _V
2524rabex 4110 . . 3  |-  { x  e.  { (/) }  |  ph }  e.  _V
2625elon 4336 . 2  |-  ( { x  e.  { (/) }  |  ph }  e.  On 
<->  Ord  { x  e. 
{ (/) }  |  ph } )
2723, 26mpbir 145 1  |-  { x  e.  { (/) }  |  ph }  e.  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1333    = wceq 1335    e. wcel 2128   {crab 2439    C_ wss 3102   (/)c0 3395   {csn 3561   Tr wtr 4064   Ord word 4324   Oncon0 4325   suc csuc 4327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-nul 4092  ax-pow 4137
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-uni 3775  df-tr 4065  df-iord 4328  df-on 4330  df-suc 4333
This theorem is referenced by:  ordtriexmid  4482  ontriexmidim  4483  ordtri2orexmid  4484  ontr2exmid  4486  onsucsssucexmid  4488  ordsoexmid  4523  0elsucexmid  4526  ordpwsucexmid  4531  unfiexmid  6864  exmidonfinlem  7130
  Copyright terms: Public domain W3C validator