| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtriexmidlem | Unicode version | ||
| Description: Lemma for decidability
and ordinals. The set |
| Ref | Expression |
|---|---|
| ordtriexmidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . 6
| |
| 2 | elrabi 2926 |
. . . . . . . . 9
| |
| 3 | velsn 3650 |
. . . . . . . . 9
| |
| 4 | 2, 3 | sylib 122 |
. . . . . . . 8
|
| 5 | noel 3464 |
. . . . . . . . 9
| |
| 6 | eleq2 2269 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mtbiri 677 |
. . . . . . . 8
|
| 8 | 4, 7 | syl 14 |
. . . . . . 7
|
| 9 | 8 | adantl 277 |
. . . . . 6
|
| 10 | 1, 9 | pm2.21dd 621 |
. . . . 5
|
| 11 | 10 | gen2 1473 |
. . . 4
|
| 12 | dftr2 4144 |
. . . 4
| |
| 13 | 11, 12 | mpbir 146 |
. . 3
|
| 14 | ssrab2 3278 |
. . 3
| |
| 15 | ord0 4438 |
. . . . 5
| |
| 16 | ordsucim 4548 |
. . . . 5
| |
| 17 | 15, 16 | ax-mp 5 |
. . . 4
|
| 18 | suc0 4458 |
. . . . 5
| |
| 19 | ordeq 4419 |
. . . . 5
| |
| 20 | 18, 19 | ax-mp 5 |
. . . 4
|
| 21 | 17, 20 | mpbi 145 |
. . 3
|
| 22 | trssord 4427 |
. . 3
| |
| 23 | 13, 14, 21, 22 | mp3an 1350 |
. 2
|
| 24 | p0ex 4232 |
. . . 4
| |
| 25 | 24 | rabex 4188 |
. . 3
|
| 26 | 25 | elon 4421 |
. 2
|
| 27 | 23, 26 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 |
| This theorem is referenced by: ordtriexmid 4569 ontriexmidim 4570 ordtri2orexmid 4571 ontr2exmid 4573 onsucsssucexmid 4575 ordsoexmid 4610 0elsucexmid 4613 ordpwsucexmid 4618 unfiexmid 7015 exmidonfinlem 7301 |
| Copyright terms: Public domain | W3C validator |