ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smo0 Unicode version

Theorem smo0 6444
Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
Assertion
Ref Expression
smo0  |-  Smo  (/)

Proof of Theorem smo0
StepHypRef Expression
1 ord0 4482 . . 3  |-  Ord  (/)
21iordsmo 6443 . 2  |-  Smo  (  _I  |`  (/) )
3 res0 5009 . . 3  |-  (  _I  |`  (/) )  =  (/)
4 smoeq 6436 . . 3  |-  ( (  _I  |`  (/) )  =  (/)  ->  ( Smo  (  _I  |`  (/) )  <->  Smo  (/) ) )
53, 4ax-mp 5 . 2  |-  ( Smo  (  _I  |`  (/) )  <->  Smo  (/) )
62, 5mpbi 145 1  |-  Smo  (/)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   (/)c0 3491    _I cid 4379    |` cres 4721   Smo wsmo 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-smo 6432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator