ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smo0 Unicode version

Theorem smo0 6245
Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
Assertion
Ref Expression
smo0  |-  Smo  (/)

Proof of Theorem smo0
StepHypRef Expression
1 ord0 4351 . . 3  |-  Ord  (/)
21iordsmo 6244 . 2  |-  Smo  (  _I  |`  (/) )
3 res0 4870 . . 3  |-  (  _I  |`  (/) )  =  (/)
4 smoeq 6237 . . 3  |-  ( (  _I  |`  (/) )  =  (/)  ->  ( Smo  (  _I  |`  (/) )  <->  Smo  (/) ) )
53, 4ax-mp 5 . 2  |-  ( Smo  (  _I  |`  (/) )  <->  Smo  (/) )
62, 5mpbi 144 1  |-  Smo  (/)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1335   (/)c0 3394    _I cid 4248    |` cres 4588   Smo wsmo 6232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-fv 5178  df-smo 6233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator