ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ordpr Unicode version

Theorem 2ordpr 4590
Description: Version of 2on 6534 with the definition of  2o expanded and expressed in terms of  Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
Assertion
Ref Expression
2ordpr  |-  Ord  { (/)
,  { (/) } }

Proof of Theorem 2ordpr
StepHypRef Expression
1 ord0 4456 . . 3  |-  Ord  (/)
2 ordsucim 4566 . . 3  |-  ( Ord  (/)  ->  Ord  suc  (/) )
3 ordsucim 4566 . . 3  |-  ( Ord 
suc  (/)  ->  Ord  suc  suc  (/) )
41, 2, 3mp2b 8 . 2  |-  Ord  suc  suc  (/)
5 df-suc 4436 . . . 4  |-  suc  { (/)
}  =  ( {
(/) }  u.  { { (/)
} } )
6 suc0 4476 . . . . 5  |-  suc  (/)  =  { (/)
}
7 suceq 4467 . . . . 5  |-  ( suc  (/)  =  { (/) }  ->  suc 
suc  (/)  =  suc  { (/)
} )
86, 7ax-mp 5 . . . 4  |-  suc  suc  (/)  =  suc  { (/) }
9 df-pr 3650 . . . 4  |-  { (/) ,  { (/) } }  =  ( { (/) }  u.  { { (/) } } )
105, 8, 93eqtr4i 2238 . . 3  |-  suc  suc  (/)  =  { (/) ,  { (/)
} }
11 ordeq 4437 . . 3  |-  ( suc 
suc  (/)  =  { (/) ,  { (/) } }  ->  ( Ord  suc  suc  (/)  <->  Ord  { (/) ,  { (/) } } ) )
1210, 11ax-mp 5 . 2  |-  ( Ord 
suc  suc  (/)  <->  Ord  { (/) ,  { (/)
} } )
134, 12mpbi 145 1  |-  Ord  { (/)
,  { (/) } }
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    u. cun 3172   (/)c0 3468   {csn 3643   {cpr 3644   Ord word 4427   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-tr 4159  df-iord 4431  df-suc 4436
This theorem is referenced by:  ontr2exmid  4591  ordtri2or2exmidlem  4592  onsucelsucexmidlem  4595
  Copyright terms: Public domain W3C validator