ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ordpr Unicode version

Theorem 2ordpr 4573
Description: Version of 2on 6513 with the definition of  2o expanded and expressed in terms of  Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
Assertion
Ref Expression
2ordpr  |-  Ord  { (/)
,  { (/) } }

Proof of Theorem 2ordpr
StepHypRef Expression
1 ord0 4439 . . 3  |-  Ord  (/)
2 ordsucim 4549 . . 3  |-  ( Ord  (/)  ->  Ord  suc  (/) )
3 ordsucim 4549 . . 3  |-  ( Ord 
suc  (/)  ->  Ord  suc  suc  (/) )
41, 2, 3mp2b 8 . 2  |-  Ord  suc  suc  (/)
5 df-suc 4419 . . . 4  |-  suc  { (/)
}  =  ( {
(/) }  u.  { { (/)
} } )
6 suc0 4459 . . . . 5  |-  suc  (/)  =  { (/)
}
7 suceq 4450 . . . . 5  |-  ( suc  (/)  =  { (/) }  ->  suc 
suc  (/)  =  suc  { (/)
} )
86, 7ax-mp 5 . . . 4  |-  suc  suc  (/)  =  suc  { (/) }
9 df-pr 3640 . . . 4  |-  { (/) ,  { (/) } }  =  ( { (/) }  u.  { { (/) } } )
105, 8, 93eqtr4i 2236 . . 3  |-  suc  suc  (/)  =  { (/) ,  { (/)
} }
11 ordeq 4420 . . 3  |-  ( suc 
suc  (/)  =  { (/) ,  { (/) } }  ->  ( Ord  suc  suc  (/)  <->  Ord  { (/) ,  { (/) } } ) )
1210, 11ax-mp 5 . 2  |-  ( Ord 
suc  suc  (/)  <->  Ord  { (/) ,  { (/)
} } )
134, 12mpbi 145 1  |-  Ord  { (/)
,  { (/) } }
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    u. cun 3164   (/)c0 3460   {csn 3633   {cpr 3634   Ord word 4410   suc csuc 4413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4144  df-iord 4414  df-suc 4419
This theorem is referenced by:  ontr2exmid  4574  ordtri2or2exmidlem  4575  onsucelsucexmidlem  4578
  Copyright terms: Public domain W3C validator