ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ordpr Unicode version

Theorem 2ordpr 4560
Description: Version of 2on 6483 with the definition of  2o expanded and expressed in terms of  Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
Assertion
Ref Expression
2ordpr  |-  Ord  { (/)
,  { (/) } }

Proof of Theorem 2ordpr
StepHypRef Expression
1 ord0 4426 . . 3  |-  Ord  (/)
2 ordsucim 4536 . . 3  |-  ( Ord  (/)  ->  Ord  suc  (/) )
3 ordsucim 4536 . . 3  |-  ( Ord 
suc  (/)  ->  Ord  suc  suc  (/) )
41, 2, 3mp2b 8 . 2  |-  Ord  suc  suc  (/)
5 df-suc 4406 . . . 4  |-  suc  { (/)
}  =  ( {
(/) }  u.  { { (/)
} } )
6 suc0 4446 . . . . 5  |-  suc  (/)  =  { (/)
}
7 suceq 4437 . . . . 5  |-  ( suc  (/)  =  { (/) }  ->  suc 
suc  (/)  =  suc  { (/)
} )
86, 7ax-mp 5 . . . 4  |-  suc  suc  (/)  =  suc  { (/) }
9 df-pr 3629 . . . 4  |-  { (/) ,  { (/) } }  =  ( { (/) }  u.  { { (/) } } )
105, 8, 93eqtr4i 2227 . . 3  |-  suc  suc  (/)  =  { (/) ,  { (/)
} }
11 ordeq 4407 . . 3  |-  ( suc 
suc  (/)  =  { (/) ,  { (/) } }  ->  ( Ord  suc  suc  (/)  <->  Ord  { (/) ,  { (/) } } ) )
1210, 11ax-mp 5 . 2  |-  ( Ord 
suc  suc  (/)  <->  Ord  { (/) ,  { (/)
} } )
134, 12mpbi 145 1  |-  Ord  { (/)
,  { (/) } }
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    u. cun 3155   (/)c0 3450   {csn 3622   {cpr 3623   Ord word 4397   suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-suc 4406
This theorem is referenced by:  ontr2exmid  4561  ordtri2or2exmidlem  4562  onsucelsucexmidlem  4565
  Copyright terms: Public domain W3C validator