ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ordpr Unicode version

Theorem 2ordpr 4508
Description: Version of 2on 6404 with the definition of  2o expanded and expressed in terms of  Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
Assertion
Ref Expression
2ordpr  |-  Ord  { (/)
,  { (/) } }

Proof of Theorem 2ordpr
StepHypRef Expression
1 ord0 4376 . . 3  |-  Ord  (/)
2 ordsucim 4484 . . 3  |-  ( Ord  (/)  ->  Ord  suc  (/) )
3 ordsucim 4484 . . 3  |-  ( Ord 
suc  (/)  ->  Ord  suc  suc  (/) )
41, 2, 3mp2b 8 . 2  |-  Ord  suc  suc  (/)
5 df-suc 4356 . . . 4  |-  suc  { (/)
}  =  ( {
(/) }  u.  { { (/)
} } )
6 suc0 4396 . . . . 5  |-  suc  (/)  =  { (/)
}
7 suceq 4387 . . . . 5  |-  ( suc  (/)  =  { (/) }  ->  suc 
suc  (/)  =  suc  { (/)
} )
86, 7ax-mp 5 . . . 4  |-  suc  suc  (/)  =  suc  { (/) }
9 df-pr 3590 . . . 4  |-  { (/) ,  { (/) } }  =  ( { (/) }  u.  { { (/) } } )
105, 8, 93eqtr4i 2201 . . 3  |-  suc  suc  (/)  =  { (/) ,  { (/)
} }
11 ordeq 4357 . . 3  |-  ( suc 
suc  (/)  =  { (/) ,  { (/) } }  ->  ( Ord  suc  suc  (/)  <->  Ord  { (/) ,  { (/) } } ) )
1210, 11ax-mp 5 . 2  |-  ( Ord 
suc  suc  (/)  <->  Ord  { (/) ,  { (/)
} } )
134, 12mpbi 144 1  |-  Ord  { (/)
,  { (/) } }
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348    u. cun 3119   (/)c0 3414   {csn 3583   {cpr 3584   Ord word 4347   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-suc 4356
This theorem is referenced by:  ontr2exmid  4509  ordtri2or2exmidlem  4510  onsucelsucexmidlem  4513
  Copyright terms: Public domain W3C validator