ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq1 Unicode version

Theorem oteq1 3750
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq1  |-  ( A  =  B  ->  <. A ,  C ,  D >.  = 
<. B ,  C ,  D >. )

Proof of Theorem oteq1
StepHypRef Expression
1 opeq1 3741 . . 3  |-  ( A  =  B  ->  <. A ,  C >.  =  <. B ,  C >. )
21opeq1d 3747 . 2  |-  ( A  =  B  ->  <. <. A ,  C >. ,  D >.  = 
<. <. B ,  C >. ,  D >. )
3 df-ot 3570 . 2  |-  <. A ,  C ,  D >.  = 
<. <. A ,  C >. ,  D >.
4 df-ot 3570 . 2  |-  <. B ,  C ,  D >.  = 
<. <. B ,  C >. ,  D >.
52, 3, 43eqtr4g 2215 1  |-  ( A  =  B  ->  <. A ,  C ,  D >.  = 
<. B ,  C ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335   <.cop 3563   <.cotp 3564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567  df-op 3569  df-ot 3570
This theorem is referenced by:  oteq1d  3753
  Copyright terms: Public domain W3C validator