ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq1 Unicode version

Theorem oteq1 3817
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq1  |-  ( A  =  B  ->  <. A ,  C ,  D >.  = 
<. B ,  C ,  D >. )

Proof of Theorem oteq1
StepHypRef Expression
1 opeq1 3808 . . 3  |-  ( A  =  B  ->  <. A ,  C >.  =  <. B ,  C >. )
21opeq1d 3814 . 2  |-  ( A  =  B  ->  <. <. A ,  C >. ,  D >.  = 
<. <. B ,  C >. ,  D >. )
3 df-ot 3632 . 2  |-  <. A ,  C ,  D >.  = 
<. <. A ,  C >. ,  D >.
4 df-ot 3632 . 2  |-  <. B ,  C ,  D >.  = 
<. <. B ,  C >. ,  D >.
52, 3, 43eqtr4g 2254 1  |-  ( A  =  B  ->  <. A ,  C ,  D >.  = 
<. B ,  C ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cop 3625   <.cotp 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-ot 3632
This theorem is referenced by:  oteq1d  3820
  Copyright terms: Public domain W3C validator