![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq1d | Unicode version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opeq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | opeq1 3793 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 |
This theorem is referenced by: oteq1 3802 oteq2 3803 opth 4255 cbvoprab2 5970 djuf1olem 7083 dfplpq2 7384 ltexnqq 7438 nnanq0 7488 addpinq1 7494 prarloclemlo 7524 prarloclem3 7527 prarloclem5 7530 prsrriota 7818 caucvgsrlemfv 7821 caucvgsr 7832 pitonnlem2 7877 pitonn 7878 recidpirq 7888 ax1rid 7907 axrnegex 7909 nntopi 7924 axcaucvglemval 7927 fseq1m1p1 10127 frecuzrdglem 10444 frecuzrdgg 10449 frecuzrdgdomlem 10450 frecuzrdgfunlem 10452 frecuzrdgsuctlem 10456 fsum2dlemstep 11477 fprod2dlemstep 11665 ennnfonelemp1 12460 ennnfonelemnn0 12476 setscomd 12556 imasaddvallemg 12795 |
Copyright terms: Public domain | W3C validator |