| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq1d | Unicode version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 |
|
| Ref | Expression |
|---|---|
| opeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 |
. 2
| |
| 2 | opeq1 3819 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: oteq1 3828 oteq2 3829 opth 4281 cbvoprab2 6018 djuf1olem 7155 dfplpq2 7467 ltexnqq 7521 nnanq0 7571 addpinq1 7577 prarloclemlo 7607 prarloclem3 7610 prarloclem5 7613 prsrriota 7901 caucvgsrlemfv 7904 caucvgsr 7915 pitonnlem2 7960 pitonn 7961 recidpirq 7971 ax1rid 7990 axrnegex 7992 nntopi 8007 axcaucvglemval 8010 fseq1m1p1 10217 frecuzrdglem 10556 frecuzrdgg 10561 frecuzrdgdomlem 10562 frecuzrdgfunlem 10564 frecuzrdgsuctlem 10568 fsum2dlemstep 11745 fprod2dlemstep 11933 ennnfonelemp1 12777 ennnfonelemnn0 12793 setscomd 12873 imasaddvallemg 13147 |
| Copyright terms: Public domain | W3C validator |