ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq1d Unicode version

Theorem opeq1d 3815
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
opeq1d  |-  ( ph  -> 
<. A ,  C >.  = 
<. B ,  C >. )

Proof of Theorem opeq1d
StepHypRef Expression
1 opeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 opeq1 3809 . 2  |-  ( A  =  B  ->  <. A ,  C >.  =  <. B ,  C >. )
31, 2syl 14 1  |-  ( ph  -> 
<. A ,  C >.  = 
<. B ,  C >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cop 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632
This theorem is referenced by:  oteq1  3818  oteq2  3819  opth  4271  cbvoprab2  5999  djuf1olem  7128  dfplpq2  7438  ltexnqq  7492  nnanq0  7542  addpinq1  7548  prarloclemlo  7578  prarloclem3  7581  prarloclem5  7584  prsrriota  7872  caucvgsrlemfv  7875  caucvgsr  7886  pitonnlem2  7931  pitonn  7932  recidpirq  7942  ax1rid  7961  axrnegex  7963  nntopi  7978  axcaucvglemval  7981  fseq1m1p1  10187  frecuzrdglem  10520  frecuzrdgg  10525  frecuzrdgdomlem  10526  frecuzrdgfunlem  10528  frecuzrdgsuctlem  10532  fsum2dlemstep  11616  fprod2dlemstep  11804  ennnfonelemp1  12648  ennnfonelemnn0  12664  setscomd  12744  imasaddvallemg  13017
  Copyright terms: Public domain W3C validator