![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq1d | Unicode version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opeq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | opeq1 3805 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 |
This theorem is referenced by: oteq1 3814 oteq2 3815 opth 4267 cbvoprab2 5992 djuf1olem 7114 dfplpq2 7416 ltexnqq 7470 nnanq0 7520 addpinq1 7526 prarloclemlo 7556 prarloclem3 7559 prarloclem5 7562 prsrriota 7850 caucvgsrlemfv 7853 caucvgsr 7864 pitonnlem2 7909 pitonn 7910 recidpirq 7920 ax1rid 7939 axrnegex 7941 nntopi 7956 axcaucvglemval 7959 fseq1m1p1 10164 frecuzrdglem 10485 frecuzrdgg 10490 frecuzrdgdomlem 10491 frecuzrdgfunlem 10493 frecuzrdgsuctlem 10497 fsum2dlemstep 11580 fprod2dlemstep 11768 ennnfonelemp1 12566 ennnfonelemnn0 12582 setscomd 12662 imasaddvallemg 12901 |
Copyright terms: Public domain | W3C validator |