![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq1d | Unicode version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opeq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | opeq1 3804 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 |
This theorem is referenced by: oteq1 3813 oteq2 3814 opth 4266 cbvoprab2 5991 djuf1olem 7112 dfplpq2 7414 ltexnqq 7468 nnanq0 7518 addpinq1 7524 prarloclemlo 7554 prarloclem3 7557 prarloclem5 7560 prsrriota 7848 caucvgsrlemfv 7851 caucvgsr 7862 pitonnlem2 7907 pitonn 7908 recidpirq 7918 ax1rid 7937 axrnegex 7939 nntopi 7954 axcaucvglemval 7957 fseq1m1p1 10161 frecuzrdglem 10482 frecuzrdgg 10487 frecuzrdgdomlem 10488 frecuzrdgfunlem 10490 frecuzrdgsuctlem 10494 fsum2dlemstep 11577 fprod2dlemstep 11765 ennnfonelemp1 12563 ennnfonelemnn0 12579 setscomd 12659 imasaddvallemg 12898 |
Copyright terms: Public domain | W3C validator |