| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq1d | Unicode version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 |
|
| Ref | Expression |
|---|---|
| opeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 |
. 2
| |
| 2 | opeq1 3833 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 |
| This theorem is referenced by: oteq1 3842 oteq2 3843 opth 4299 cbvoprab2 6041 djuf1olem 7181 dfplpq2 7502 ltexnqq 7556 nnanq0 7606 addpinq1 7612 prarloclemlo 7642 prarloclem3 7645 prarloclem5 7648 prsrriota 7936 caucvgsrlemfv 7939 caucvgsr 7950 pitonnlem2 7995 pitonn 7996 recidpirq 8006 ax1rid 8025 axrnegex 8027 nntopi 8042 axcaucvglemval 8045 fseq1m1p1 10252 frecuzrdglem 10593 frecuzrdgg 10598 frecuzrdgdomlem 10599 frecuzrdgfunlem 10601 frecuzrdgsuctlem 10605 pfxswrd 11197 swrdccat 11226 swrdccat3blem 11230 fsum2dlemstep 11860 fprod2dlemstep 12048 ennnfonelemp1 12892 ennnfonelemnn0 12908 setscomd 12988 imasaddvallemg 13262 |
| Copyright terms: Public domain | W3C validator |