| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opeq1d | Unicode version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) | 
| Ref | Expression | 
|---|---|
| opeq1d.1 | 
 | 
| Ref | Expression | 
|---|---|
| opeq1d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opeq1d.1 | 
. 2
 | |
| 2 | opeq1 3808 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 | 
| This theorem is referenced by: oteq1 3817 oteq2 3818 opth 4270 cbvoprab2 5995 djuf1olem 7119 dfplpq2 7421 ltexnqq 7475 nnanq0 7525 addpinq1 7531 prarloclemlo 7561 prarloclem3 7564 prarloclem5 7567 prsrriota 7855 caucvgsrlemfv 7858 caucvgsr 7869 pitonnlem2 7914 pitonn 7915 recidpirq 7925 ax1rid 7944 axrnegex 7946 nntopi 7961 axcaucvglemval 7964 fseq1m1p1 10170 frecuzrdglem 10503 frecuzrdgg 10508 frecuzrdgdomlem 10509 frecuzrdgfunlem 10511 frecuzrdgsuctlem 10515 fsum2dlemstep 11599 fprod2dlemstep 11787 ennnfonelemp1 12623 ennnfonelemnn0 12639 setscomd 12719 imasaddvallemg 12958 | 
| Copyright terms: Public domain | W3C validator |