| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq1d | Unicode version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 |
|
| Ref | Expression |
|---|---|
| opeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 |
. 2
| |
| 2 | opeq1 3856 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: oteq1 3865 oteq2 3866 opth 4322 cbvoprab2 6076 djuf1olem 7216 dfplpq2 7537 ltexnqq 7591 nnanq0 7641 addpinq1 7647 prarloclemlo 7677 prarloclem3 7680 prarloclem5 7683 prsrriota 7971 caucvgsrlemfv 7974 caucvgsr 7985 pitonnlem2 8030 pitonn 8031 recidpirq 8041 ax1rid 8060 axrnegex 8062 nntopi 8077 axcaucvglemval 8080 fseq1m1p1 10287 frecuzrdglem 10628 frecuzrdgg 10633 frecuzrdgdomlem 10634 frecuzrdgfunlem 10636 frecuzrdgsuctlem 10640 pfxswrd 11233 swrdccat 11262 swrdccat3blem 11266 fsum2dlemstep 11940 fprod2dlemstep 12128 ennnfonelemp1 12972 ennnfonelemnn0 12988 setscomd 13068 imasaddvallemg 13343 |
| Copyright terms: Public domain | W3C validator |