ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq1d Unicode version

Theorem opeq1d 3799
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
opeq1d  |-  ( ph  -> 
<. A ,  C >.  = 
<. B ,  C >. )

Proof of Theorem opeq1d
StepHypRef Expression
1 opeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 opeq1 3793 . 2  |-  ( A  =  B  ->  <. A ,  C >.  =  <. B ,  C >. )
31, 2syl 14 1  |-  ( ph  -> 
<. A ,  C >.  = 
<. B ,  C >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cop 3610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616
This theorem is referenced by:  oteq1  3802  oteq2  3803  opth  4255  cbvoprab2  5970  djuf1olem  7083  dfplpq2  7384  ltexnqq  7438  nnanq0  7488  addpinq1  7494  prarloclemlo  7524  prarloclem3  7527  prarloclem5  7530  prsrriota  7818  caucvgsrlemfv  7821  caucvgsr  7832  pitonnlem2  7877  pitonn  7878  recidpirq  7888  ax1rid  7907  axrnegex  7909  nntopi  7924  axcaucvglemval  7927  fseq1m1p1  10127  frecuzrdglem  10444  frecuzrdgg  10449  frecuzrdgdomlem  10450  frecuzrdgfunlem  10452  frecuzrdgsuctlem  10456  fsum2dlemstep  11477  fprod2dlemstep  11665  ennnfonelemp1  12460  ennnfonelemnn0  12476  setscomd  12556  imasaddvallemg  12795
  Copyright terms: Public domain W3C validator