![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oteq2 | GIF version |
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
oteq2 | ⊢ (𝐴 = 𝐵 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 3781 | . . 3 ⊢ (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩) | |
2 | 1 | opeq1d 3786 | . 2 ⊢ (𝐴 = 𝐵 → ⟨⟨𝐶, 𝐴⟩, 𝐷⟩ = ⟨⟨𝐶, 𝐵⟩, 𝐷⟩) |
3 | df-ot 3604 | . 2 ⊢ ⟨𝐶, 𝐴, 𝐷⟩ = ⟨⟨𝐶, 𝐴⟩, 𝐷⟩ | |
4 | df-ot 3604 | . 2 ⊢ ⟨𝐶, 𝐵, 𝐷⟩ = ⟨⟨𝐶, 𝐵⟩, 𝐷⟩ | |
5 | 2, 3, 4 | 3eqtr4g 2235 | 1 ⊢ (𝐴 = 𝐵 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ⟨cop 3597 ⟨cotp 3598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-ot 3604 |
This theorem is referenced by: oteq2d 3793 |
Copyright terms: Public domain | W3C validator |