ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq2 GIF version

Theorem oteq2 3829
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq2 (𝐴 = 𝐵 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)

Proof of Theorem oteq2
StepHypRef Expression
1 opeq2 3820 . . 3 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
21opeq1d 3825 . 2 (𝐴 = 𝐵 → ⟨⟨𝐶, 𝐴⟩, 𝐷⟩ = ⟨⟨𝐶, 𝐵⟩, 𝐷⟩)
3 df-ot 3643 . 2 𝐶, 𝐴, 𝐷⟩ = ⟨⟨𝐶, 𝐴⟩, 𝐷
4 df-ot 3643 . 2 𝐶, 𝐵, 𝐷⟩ = ⟨⟨𝐶, 𝐵⟩, 𝐷
52, 3, 43eqtr4g 2263 1 (𝐴 = 𝐵 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cop 3636  cotp 3637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-ot 3643
This theorem is referenced by:  oteq2d  3832
  Copyright terms: Public domain W3C validator