ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqvinop Unicode version

Theorem eqvinop 4329
Description: A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
eqvinop.1  |-  B  e. 
_V
eqvinop.2  |-  C  e. 
_V
Assertion
Ref Expression
eqvinop  |-  ( A  =  <. B ,  C >.  <->  E. x E. y ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )
)
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem eqvinop
StepHypRef Expression
1 eqvinop.1 . . . . . . . 8  |-  B  e. 
_V
2 eqvinop.2 . . . . . . . 8  |-  C  e. 
_V
31, 2opth2 4326 . . . . . . 7  |-  ( <.
x ,  y >.  =  <. B ,  C >.  <-> 
( x  =  B  /\  y  =  C ) )
43anbi2i 457 . . . . . 6  |-  ( ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )  <->  ( A  =  <. x ,  y >.  /\  (
x  =  B  /\  y  =  C )
) )
5 ancom 266 . . . . . 6  |-  ( ( A  =  <. x ,  y >.  /\  (
x  =  B  /\  y  =  C )
)  <->  ( ( x  =  B  /\  y  =  C )  /\  A  =  <. x ,  y
>. ) )
6 anass 401 . . . . . 6  |-  ( ( ( x  =  B  /\  y  =  C )  /\  A  = 
<. x ,  y >.
)  <->  ( x  =  B  /\  ( y  =  C  /\  A  =  <. x ,  y
>. ) ) )
74, 5, 63bitri 206 . . . . 5  |-  ( ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )  <->  ( x  =  B  /\  ( y  =  C  /\  A  =  <. x ,  y >. )
) )
87exbii 1651 . . . 4  |-  ( E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  =  <. B ,  C >. )  <->  E. y
( x  =  B  /\  ( y  =  C  /\  A  = 
<. x ,  y >.
) ) )
9 19.42v 1953 . . . 4  |-  ( E. y ( x  =  B  /\  ( y  =  C  /\  A  =  <. x ,  y
>. ) )  <->  ( x  =  B  /\  E. y
( y  =  C  /\  A  =  <. x ,  y >. )
) )
10 opeq2 3858 . . . . . . 7  |-  ( y  =  C  ->  <. x ,  y >.  =  <. x ,  C >. )
1110eqeq2d 2241 . . . . . 6  |-  ( y  =  C  ->  ( A  =  <. x ,  y >.  <->  A  =  <. x ,  C >. )
)
122, 11ceqsexv 2839 . . . . 5  |-  ( E. y ( y  =  C  /\  A  = 
<. x ,  y >.
)  <->  A  =  <. x ,  C >. )
1312anbi2i 457 . . . 4  |-  ( ( x  =  B  /\  E. y ( y  =  C  /\  A  = 
<. x ,  y >.
) )  <->  ( x  =  B  /\  A  = 
<. x ,  C >. ) )
148, 9, 133bitri 206 . . 3  |-  ( E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  =  <. B ,  C >. )  <->  ( x  =  B  /\  A  = 
<. x ,  C >. ) )
1514exbii 1651 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )  <->  E. x ( x  =  B  /\  A  = 
<. x ,  C >. ) )
16 opeq1 3857 . . . 4  |-  ( x  =  B  ->  <. x ,  C >.  =  <. B ,  C >. )
1716eqeq2d 2241 . . 3  |-  ( x  =  B  ->  ( A  =  <. x ,  C >.  <->  A  =  <. B ,  C >. )
)
181, 17ceqsexv 2839 . 2  |-  ( E. x ( x  =  B  /\  A  = 
<. x ,  C >. )  <-> 
A  =  <. B ,  C >. )
1915, 18bitr2i 185 1  |-  ( A  =  <. B ,  C >.  <->  E. x E. y ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   <.cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  copsexg  4330  ralxpf  4868  rexxpf  4869  oprabid  6033
  Copyright terms: Public domain W3C validator