| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqvinop | Unicode version | ||
| Description: A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| eqvinop.1 |
|
| eqvinop.2 |
|
| Ref | Expression |
|---|---|
| eqvinop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvinop.1 |
. . . . . . . 8
| |
| 2 | eqvinop.2 |
. . . . . . . 8
| |
| 3 | 1, 2 | opth2 4273 |
. . . . . . 7
|
| 4 | 3 | anbi2i 457 |
. . . . . 6
|
| 5 | ancom 266 |
. . . . . 6
| |
| 6 | anass 401 |
. . . . . 6
| |
| 7 | 4, 5, 6 | 3bitri 206 |
. . . . 5
|
| 8 | 7 | exbii 1619 |
. . . 4
|
| 9 | 19.42v 1921 |
. . . 4
| |
| 10 | opeq2 3809 |
. . . . . . 7
| |
| 11 | 10 | eqeq2d 2208 |
. . . . . 6
|
| 12 | 2, 11 | ceqsexv 2802 |
. . . . 5
|
| 13 | 12 | anbi2i 457 |
. . . 4
|
| 14 | 8, 9, 13 | 3bitri 206 |
. . 3
|
| 15 | 14 | exbii 1619 |
. 2
|
| 16 | opeq1 3808 |
. . . 4
| |
| 17 | 16 | eqeq2d 2208 |
. . 3
|
| 18 | 1, 17 | ceqsexv 2802 |
. 2
|
| 19 | 15, 18 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 |
| This theorem is referenced by: copsexg 4277 ralxpf 4812 rexxpf 4813 oprabid 5954 |
| Copyright terms: Public domain | W3C validator |