Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqvinop | Unicode version |
Description: A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
eqvinop.1 | |
eqvinop.2 |
Ref | Expression |
---|---|
eqvinop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvinop.1 | . . . . . . . 8 | |
2 | eqvinop.2 | . . . . . . . 8 | |
3 | 1, 2 | opth2 4218 | . . . . . . 7 |
4 | 3 | anbi2i 453 | . . . . . 6 |
5 | ancom 264 | . . . . . 6 | |
6 | anass 399 | . . . . . 6 | |
7 | 4, 5, 6 | 3bitri 205 | . . . . 5 |
8 | 7 | exbii 1593 | . . . 4 |
9 | 19.42v 1894 | . . . 4 | |
10 | opeq2 3759 | . . . . . . 7 | |
11 | 10 | eqeq2d 2177 | . . . . . 6 |
12 | 2, 11 | ceqsexv 2765 | . . . . 5 |
13 | 12 | anbi2i 453 | . . . 4 |
14 | 8, 9, 13 | 3bitri 205 | . . 3 |
15 | 14 | exbii 1593 | . 2 |
16 | opeq1 3758 | . . . 4 | |
17 | 16 | eqeq2d 2177 | . . 3 |
18 | 1, 17 | ceqsexv 2765 | . 2 |
19 | 15, 18 | bitr2i 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: copsexg 4222 ralxpf 4750 rexxpf 4751 oprabid 5874 |
Copyright terms: Public domain | W3C validator |