| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqvinop | Unicode version | ||
| Description: A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| eqvinop.1 |
|
| eqvinop.2 |
|
| Ref | Expression |
|---|---|
| eqvinop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvinop.1 |
. . . . . . . 8
| |
| 2 | eqvinop.2 |
. . . . . . . 8
| |
| 3 | 1, 2 | opth2 4326 |
. . . . . . 7
|
| 4 | 3 | anbi2i 457 |
. . . . . 6
|
| 5 | ancom 266 |
. . . . . 6
| |
| 6 | anass 401 |
. . . . . 6
| |
| 7 | 4, 5, 6 | 3bitri 206 |
. . . . 5
|
| 8 | 7 | exbii 1651 |
. . . 4
|
| 9 | 19.42v 1953 |
. . . 4
| |
| 10 | opeq2 3858 |
. . . . . . 7
| |
| 11 | 10 | eqeq2d 2241 |
. . . . . 6
|
| 12 | 2, 11 | ceqsexv 2839 |
. . . . 5
|
| 13 | 12 | anbi2i 457 |
. . . 4
|
| 14 | 8, 9, 13 | 3bitri 206 |
. . 3
|
| 15 | 14 | exbii 1651 |
. 2
|
| 16 | opeq1 3857 |
. . . 4
| |
| 17 | 16 | eqeq2d 2241 |
. . 3
|
| 18 | 1, 17 | ceqsexv 2839 |
. 2
|
| 19 | 15, 18 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: copsexg 4330 ralxpf 4868 rexxpf 4869 oprabid 6033 |
| Copyright terms: Public domain | W3C validator |