ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otth2 Unicode version

Theorem otth2 4303
Description: Ordered triple theorem, with triple express with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
otth.1  |-  A  e. 
_V
otth.2  |-  B  e. 
_V
otth.3  |-  R  e. 
_V
Assertion
Ref Expression
otth2  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S ) )

Proof of Theorem otth2
StepHypRef Expression
1 otth.1 . . . 4  |-  A  e. 
_V
2 otth.2 . . . 4  |-  B  e. 
_V
31, 2opth 4299 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
43anbi1i 458 . 2  |-  ( (
<. A ,  B >.  = 
<. C ,  D >.  /\  R  =  S )  <-> 
( ( A  =  C  /\  B  =  D )  /\  R  =  S ) )
51, 2opex 4291 . . 3  |-  <. A ,  B >.  e.  _V
6 otth.3 . . 3  |-  R  e. 
_V
75, 6opth 4299 . 2  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( <. A ,  B >.  =  <. C ,  D >.  /\  R  =  S ) )
8 df-3an 983 . 2  |-  ( ( A  =  C  /\  B  =  D  /\  R  =  S )  <->  ( ( A  =  C  /\  B  =  D )  /\  R  =  S ) )
94, 7, 83bitr4i 212 1  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   _Vcvv 2776   <.cop 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652
This theorem is referenced by:  otth  4304  oprabid  5999  eloprabga  6055
  Copyright terms: Public domain W3C validator