ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otth2 Unicode version

Theorem otth2 4226
Description: Ordered triple theorem, with triple express with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
otth.1  |-  A  e. 
_V
otth.2  |-  B  e. 
_V
otth.3  |-  R  e. 
_V
Assertion
Ref Expression
otth2  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S ) )

Proof of Theorem otth2
StepHypRef Expression
1 otth.1 . . . 4  |-  A  e. 
_V
2 otth.2 . . . 4  |-  B  e. 
_V
31, 2opth 4222 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
43anbi1i 455 . 2  |-  ( (
<. A ,  B >.  = 
<. C ,  D >.  /\  R  =  S )  <-> 
( ( A  =  C  /\  B  =  D )  /\  R  =  S ) )
51, 2opex 4214 . . 3  |-  <. A ,  B >.  e.  _V
6 otth.3 . . 3  |-  R  e. 
_V
75, 6opth 4222 . 2  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( <. A ,  B >.  =  <. C ,  D >.  /\  R  =  S ) )
8 df-3an 975 . 2  |-  ( ( A  =  C  /\  B  =  D  /\  R  =  S )  <->  ( ( A  =  C  /\  B  =  D )  /\  R  =  S ) )
94, 7, 83bitr4i 211 1  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   _Vcvv 2730   <.cop 3586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592
This theorem is referenced by:  otth  4227  oprabid  5885  eloprabga  5940
  Copyright terms: Public domain W3C validator