ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnz Unicode version

Theorem btwnz 9374
Description: Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
Assertion
Ref Expression
btwnz  |-  ( A  e.  RR  ->  ( E. x  e.  ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
Distinct variable groups:    x, A    y, A

Proof of Theorem btwnz
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 renegcl 8220 . . . 4  |-  ( A  e.  RR  ->  -u A  e.  RR )
2 arch 9175 . . . 4  |-  ( -u A  e.  RR  ->  E. z  e.  NN  -u A  <  z )
31, 2syl 14 . . 3  |-  ( A  e.  RR  ->  E. z  e.  NN  -u A  <  z
)
4 nnre 8928 . . . . . . . 8  |-  ( z  e.  NN  ->  z  e.  RR )
5 ltnegcon1 8422 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( -u A  < 
z  <->  -u z  <  A
) )
65ex 115 . . . . . . . 8  |-  ( A  e.  RR  ->  (
z  e.  RR  ->  (
-u A  <  z  <->  -u z  <  A ) ) )
74, 6syl5 32 . . . . . . 7  |-  ( A  e.  RR  ->  (
z  e.  NN  ->  (
-u A  <  z  <->  -u z  <  A ) ) )
87pm5.32d 450 . . . . . 6  |-  ( A  e.  RR  ->  (
( z  e.  NN  /\  -u A  <  z )  <-> 
( z  e.  NN  /\  -u z  <  A ) ) )
9 nnnegz 9258 . . . . . . 7  |-  ( z  e.  NN  ->  -u z  e.  ZZ )
10 breq1 4008 . . . . . . . 8  |-  ( x  =  -u z  ->  (
x  <  A  <->  -u z  < 
A ) )
1110rspcev 2843 . . . . . . 7  |-  ( (
-u z  e.  ZZ  /\  -u z  <  A )  ->  E. x  e.  ZZ  x  <  A )
129, 11sylan 283 . . . . . 6  |-  ( ( z  e.  NN  /\  -u z  <  A )  ->  E. x  e.  ZZ  x  <  A )
138, 12biimtrdi 163 . . . . 5  |-  ( A  e.  RR  ->  (
( z  e.  NN  /\  -u A  <  z )  ->  E. x  e.  ZZ  x  <  A ) )
1413expd 258 . . . 4  |-  ( A  e.  RR  ->  (
z  e.  NN  ->  (
-u A  <  z  ->  E. x  e.  ZZ  x  <  A ) ) )
1514rexlimdv 2593 . . 3  |-  ( A  e.  RR  ->  ( E. z  e.  NN  -u A  <  z  ->  E. x  e.  ZZ  x  <  A ) )
163, 15mpd 13 . 2  |-  ( A  e.  RR  ->  E. x  e.  ZZ  x  <  A
)
17 arch 9175 . . 3  |-  ( A  e.  RR  ->  E. y  e.  NN  A  <  y
)
18 nnz 9274 . . . . 5  |-  ( y  e.  NN  ->  y  e.  ZZ )
1918anim1i 340 . . . 4  |-  ( ( y  e.  NN  /\  A  <  y )  -> 
( y  e.  ZZ  /\  A  <  y ) )
2019reximi2 2573 . . 3  |-  ( E. y  e.  NN  A  <  y  ->  E. y  e.  ZZ  A  <  y
)
2117, 20syl 14 . 2  |-  ( A  e.  RR  ->  E. y  e.  ZZ  A  <  y
)
2216, 21jca 306 1  |-  ( A  e.  RR  ->  ( E. x  e.  ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   E.wrex 2456   class class class wbr 4005   RRcr 7812    < clt 7994   -ucneg 8131   NNcn 8921   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929  ax-arch 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-z 9256
This theorem is referenced by:  lbzbi  9618  exbtwnzlemex  10252  rebtwn2z  10257
  Copyright terms: Public domain W3C validator