ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnz Unicode version

Theorem btwnz 9445
Description: Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
Assertion
Ref Expression
btwnz  |-  ( A  e.  RR  ->  ( E. x  e.  ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
Distinct variable groups:    x, A    y, A

Proof of Theorem btwnz
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 renegcl 8287 . . . 4  |-  ( A  e.  RR  ->  -u A  e.  RR )
2 arch 9246 . . . 4  |-  ( -u A  e.  RR  ->  E. z  e.  NN  -u A  <  z )
31, 2syl 14 . . 3  |-  ( A  e.  RR  ->  E. z  e.  NN  -u A  <  z
)
4 nnre 8997 . . . . . . . 8  |-  ( z  e.  NN  ->  z  e.  RR )
5 ltnegcon1 8490 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( -u A  < 
z  <->  -u z  <  A
) )
65ex 115 . . . . . . . 8  |-  ( A  e.  RR  ->  (
z  e.  RR  ->  (
-u A  <  z  <->  -u z  <  A ) ) )
74, 6syl5 32 . . . . . . 7  |-  ( A  e.  RR  ->  (
z  e.  NN  ->  (
-u A  <  z  <->  -u z  <  A ) ) )
87pm5.32d 450 . . . . . 6  |-  ( A  e.  RR  ->  (
( z  e.  NN  /\  -u A  <  z )  <-> 
( z  e.  NN  /\  -u z  <  A ) ) )
9 nnnegz 9329 . . . . . . 7  |-  ( z  e.  NN  ->  -u z  e.  ZZ )
10 breq1 4036 . . . . . . . 8  |-  ( x  =  -u z  ->  (
x  <  A  <->  -u z  < 
A ) )
1110rspcev 2868 . . . . . . 7  |-  ( (
-u z  e.  ZZ  /\  -u z  <  A )  ->  E. x  e.  ZZ  x  <  A )
129, 11sylan 283 . . . . . 6  |-  ( ( z  e.  NN  /\  -u z  <  A )  ->  E. x  e.  ZZ  x  <  A )
138, 12biimtrdi 163 . . . . 5  |-  ( A  e.  RR  ->  (
( z  e.  NN  /\  -u A  <  z )  ->  E. x  e.  ZZ  x  <  A ) )
1413expd 258 . . . 4  |-  ( A  e.  RR  ->  (
z  e.  NN  ->  (
-u A  <  z  ->  E. x  e.  ZZ  x  <  A ) ) )
1514rexlimdv 2613 . . 3  |-  ( A  e.  RR  ->  ( E. z  e.  NN  -u A  <  z  ->  E. x  e.  ZZ  x  <  A ) )
163, 15mpd 13 . 2  |-  ( A  e.  RR  ->  E. x  e.  ZZ  x  <  A
)
17 arch 9246 . . 3  |-  ( A  e.  RR  ->  E. y  e.  NN  A  <  y
)
18 nnz 9345 . . . . 5  |-  ( y  e.  NN  ->  y  e.  ZZ )
1918anim1i 340 . . . 4  |-  ( ( y  e.  NN  /\  A  <  y )  -> 
( y  e.  ZZ  /\  A  <  y ) )
2019reximi2 2593 . . 3  |-  ( E. y  e.  NN  A  <  y  ->  E. y  e.  ZZ  A  <  y
)
2117, 20syl 14 . 2  |-  ( A  e.  RR  ->  E. y  e.  ZZ  A  <  y
)
2216, 21jca 306 1  |-  ( A  e.  RR  ->  ( E. x  e.  ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   E.wrex 2476   class class class wbr 4033   RRcr 7878    < clt 8061   -ucneg 8198   NNcn 8990   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-z 9327
This theorem is referenced by:  lbzbi  9690  exbtwnzlemex  10339  rebtwn2z  10344
  Copyright terms: Public domain W3C validator