Proof of Theorem preqr1g
| Step | Hyp | Ref
| Expression |
| 1 | | prid1g 3727 |
. . . . . . 7
⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐶}) |
| 2 | | eleq2 2260 |
. . . . . . 7
⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 ∈ {𝐴, 𝐶} ↔ 𝐴 ∈ {𝐵, 𝐶})) |
| 3 | 1, 2 | syl5ibcom 155 |
. . . . . 6
⊢ (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 ∈ {𝐵, 𝐶})) |
| 4 | | elprg 3643 |
. . . . . 6
⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 5 | 3, 4 | sylibd 149 |
. . . . 5
⊢ (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 6 | 5 | adantr 276 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 7 | 6 | imp 124 |
. . 3
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 8 | | prid1g 3727 |
. . . . . . 7
⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐵, 𝐶}) |
| 9 | | eleq2 2260 |
. . . . . . 7
⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 ∈ {𝐴, 𝐶} ↔ 𝐵 ∈ {𝐵, 𝐶})) |
| 10 | 8, 9 | syl5ibrcom 157 |
. . . . . 6
⊢ (𝐵 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐵 ∈ {𝐴, 𝐶})) |
| 11 | | elprg 3643 |
. . . . . 6
⊢ (𝐵 ∈ V → (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) |
| 12 | 10, 11 | sylibd 149 |
. . . . 5
⊢ (𝐵 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) |
| 13 | 12 | adantl 277 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) |
| 14 | 13 | imp 124 |
. . 3
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) |
| 15 | | eqcom 2198 |
. . 3
⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) |
| 16 | | eqeq2 2206 |
. . 3
⊢ (𝐴 = 𝐶 → (𝐵 = 𝐴 ↔ 𝐵 = 𝐶)) |
| 17 | 7, 14, 15, 16 | oplem1 977 |
. 2
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → 𝐴 = 𝐵) |
| 18 | 17 | ex 115 |
1
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)) |