Proof of Theorem preqr1g
| Step | Hyp | Ref
 | Expression | 
| 1 |   | prid1g 3726 | 
. . . . . . 7
⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐶}) | 
| 2 |   | eleq2 2260 | 
. . . . . . 7
⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 ∈ {𝐴, 𝐶} ↔ 𝐴 ∈ {𝐵, 𝐶})) | 
| 3 | 1, 2 | syl5ibcom 155 | 
. . . . . 6
⊢ (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 ∈ {𝐵, 𝐶})) | 
| 4 |   | elprg 3642 | 
. . . . . 6
⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | 
| 5 | 3, 4 | sylibd 149 | 
. . . . 5
⊢ (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | 
| 6 | 5 | adantr 276 | 
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | 
| 7 | 6 | imp 124 | 
. . 3
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | 
| 8 |   | prid1g 3726 | 
. . . . . . 7
⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐵, 𝐶}) | 
| 9 |   | eleq2 2260 | 
. . . . . . 7
⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 ∈ {𝐴, 𝐶} ↔ 𝐵 ∈ {𝐵, 𝐶})) | 
| 10 | 8, 9 | syl5ibrcom 157 | 
. . . . . 6
⊢ (𝐵 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐵 ∈ {𝐴, 𝐶})) | 
| 11 |   | elprg 3642 | 
. . . . . 6
⊢ (𝐵 ∈ V → (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) | 
| 12 | 10, 11 | sylibd 149 | 
. . . . 5
⊢ (𝐵 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) | 
| 13 | 12 | adantl 277 | 
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) | 
| 14 | 13 | imp 124 | 
. . 3
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) | 
| 15 |   | eqcom 2198 | 
. . 3
⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | 
| 16 |   | eqeq2 2206 | 
. . 3
⊢ (𝐴 = 𝐶 → (𝐵 = 𝐴 ↔ 𝐵 = 𝐶)) | 
| 17 | 7, 14, 15, 16 | oplem1 977 | 
. 2
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → 𝐴 = 𝐵) | 
| 18 | 17 | ex 115 | 
1
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)) |