ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr1g GIF version

Theorem preqr1g 3768
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 3770. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
preqr1g ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵))

Proof of Theorem preqr1g
StepHypRef Expression
1 prid1g 3698 . . . . . . 7 (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐶})
2 eleq2 2241 . . . . . . 7 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 ∈ {𝐴, 𝐶} ↔ 𝐴 ∈ {𝐵, 𝐶}))
31, 2syl5ibcom 155 . . . . . 6 (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 ∈ {𝐵, 𝐶}))
4 elprg 3614 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
53, 4sylibd 149 . . . . 5 (𝐴 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶)))
65adantr 276 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶)))
76imp 124 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐴 = 𝐵𝐴 = 𝐶))
8 prid1g 3698 . . . . . . 7 (𝐵 ∈ V → 𝐵 ∈ {𝐵, 𝐶})
9 eleq2 2241 . . . . . . 7 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 ∈ {𝐴, 𝐶} ↔ 𝐵 ∈ {𝐵, 𝐶}))
108, 9syl5ibrcom 157 . . . . . 6 (𝐵 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐵 ∈ {𝐴, 𝐶}))
11 elprg 3614 . . . . . 6 (𝐵 ∈ V → (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐶)))
1210, 11sylibd 149 . . . . 5 (𝐵 ∈ V → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴𝐵 = 𝐶)))
1312adantl 277 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴𝐵 = 𝐶)))
1413imp 124 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐵 = 𝐴𝐵 = 𝐶))
15 eqcom 2179 . . 3 (𝐴 = 𝐵𝐵 = 𝐴)
16 eqeq2 2187 . . 3 (𝐴 = 𝐶 → (𝐵 = 𝐴𝐵 = 𝐶))
177, 14, 15, 16oplem1 975 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → 𝐴 = 𝐵)
1817ex 115 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148  Vcvv 2739  {cpr 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601
This theorem is referenced by:  preqr2g  3769
  Copyright terms: Public domain W3C validator