ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspprid1 Unicode version

Theorem lspprid1 14369
Description: A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
lspprid.v  |-  V  =  ( Base `  W
)
lspprid.n  |-  N  =  ( LSpan `  W )
lspprid.w  |-  ( ph  ->  W  e.  LMod )
lspprid.x  |-  ( ph  ->  X  e.  V )
lspprid.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lspprid1  |-  ( ph  ->  X  e.  ( N `
 { X ,  Y } ) )

Proof of Theorem lspprid1
StepHypRef Expression
1 lspprid.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 lspprid.x . . . 4  |-  ( ph  ->  X  e.  V )
3 lspprid.y . . . 4  |-  ( ph  ->  Y  e.  V )
42, 3prssd 3826 . . 3  |-  ( ph  ->  { X ,  Y }  C_  V )
5 snsspr1 3815 . . . 4  |-  { X }  C_  { X ,  Y }
65a1i 9 . . 3  |-  ( ph  ->  { X }  C_  { X ,  Y }
)
7 lspprid.v . . . 4  |-  V  =  ( Base `  W
)
8 lspprid.n . . . 4  |-  N  =  ( LSpan `  W )
97, 8lspss 14357 . . 3  |-  ( ( W  e.  LMod  /\  { X ,  Y }  C_  V  /\  { X }  C_  { X ,  Y } )  ->  ( N `  { X } )  C_  ( N `  { X ,  Y } ) )
101, 4, 6, 9syl3anc 1271 . 2  |-  ( ph  ->  ( N `  { X } )  C_  ( N `  { X ,  Y } ) )
11 eqid 2229 . . 3  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
127, 11, 8, 1, 2, 3lspprcl 14351 . . 3  |-  ( ph  ->  ( N `  { X ,  Y }
)  e.  ( LSubSp `  W ) )
137, 11, 8, 1, 12, 2lspsnel5 14367 . 2  |-  ( ph  ->  ( X  e.  ( N `  { X ,  Y } )  <->  ( N `  { X } ) 
C_  ( N `  { X ,  Y }
) ) )
1410, 13mpbird 167 1  |-  ( ph  ->  X  e.  ( N `
 { X ,  Y } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    C_ wss 3197   {csn 3666   {cpr 3667   ` cfv 5317   Basecbs 13027   LModclmod 14245   LSubSpclss 14310   LSpanclspn 14344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-sbg 13533  df-mgp 13879  df-ur 13918  df-ring 13956  df-lmod 14247  df-lssm 14311  df-lsp 14345
This theorem is referenced by:  lspprid2  14370  lspprvacl  14371
  Copyright terms: Public domain W3C validator