![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prssd | GIF version |
Description: Deduction version of prssi 3777: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | prssi 3777 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3154 {cpr 3620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 |
This theorem is referenced by: 0idnsgd 13289 isnzr2 13683 lspprcl 13892 lsptpcl 13893 lspprss 13905 lspprid1 13910 |
Copyright terms: Public domain | W3C validator |