ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bassetsnn Unicode version

Theorem bassetsnn 13055
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
basprssdmsets.s  |-  ( ph  ->  S Struct  X )
bassetsnn.i  |-  ( ph  ->  I  e.  NN )
basprssdmsets.w  |-  ( ph  ->  E  e.  W )
basprssdmsets.b  |-  ( ph  ->  ( Base `  ndx )  e.  dom  S )
Assertion
Ref Expression
bassetsnn  |-  ( ph  ->  { ( Base `  ndx ) ,  I }  C_ 
dom  ( S sSet  <. I ,  E >. )
)

Proof of Theorem bassetsnn
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( (
ph  /\  ( Base ` 
ndx )  =  I )  ->  ( Base ` 
ndx )  =  I )
2 bassetsnn.i . . . . . . . . . 10  |-  ( ph  ->  I  e.  NN )
3 snidg 3675 . . . . . . . . . 10  |-  ( I  e.  NN  ->  I  e.  { I } )
42, 3syl 14 . . . . . . . . 9  |-  ( ph  ->  I  e.  { I } )
5 basprssdmsets.w . . . . . . . . . 10  |-  ( ph  ->  E  e.  W )
6 dmsnopg 5176 . . . . . . . . . 10  |-  ( E  e.  W  ->  dom  {
<. I ,  E >. }  =  { I }
)
75, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  dom  { <. I ,  E >. }  =  {
I } )
84, 7eleqtrrd 2289 . . . . . . . 8  |-  ( ph  ->  I  e.  dom  { <. I ,  E >. } )
9 elun2 3352 . . . . . . . 8  |-  ( I  e.  dom  { <. I ,  E >. }  ->  I  e.  ( dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u. 
dom  { <. I ,  E >. } ) )
108, 9syl 14 . . . . . . 7  |-  ( ph  ->  I  e.  ( dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  dom  { <. I ,  E >. } ) )
11 dmun 4907 . . . . . . 7  |-  dom  (
( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } )  =  ( dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u. 
dom  { <. I ,  E >. } )
1210, 11eleqtrrdi 2303 . . . . . 6  |-  ( ph  ->  I  e.  dom  (
( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
13 basprssdmsets.s . . . . . . . . 9  |-  ( ph  ->  S Struct  X )
14 structex 13010 . . . . . . . . 9  |-  ( S Struct  X  ->  S  e.  _V )
1513, 14syl 14 . . . . . . . 8  |-  ( ph  ->  S  e.  _V )
16 opexg 4293 . . . . . . . . 9  |-  ( ( I  e.  NN  /\  E  e.  W )  -> 
<. I ,  E >.  e. 
_V )
172, 5, 16syl2anc 411 . . . . . . . 8  |-  ( ph  -> 
<. I ,  E >.  e. 
_V )
18 setsvalg 13028 . . . . . . . 8  |-  ( ( S  e.  _V  /\  <.
I ,  E >.  e. 
_V )  ->  ( S sSet  <. I ,  E >. )  =  ( ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
1915, 17, 18syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( S sSet  <. I ,  E >. )  =  ( ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
2019dmeqd 4902 . . . . . 6  |-  ( ph  ->  dom  ( S sSet  <. I ,  E >. )  =  dom  ( ( S  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
2112, 20eleqtrrd 2289 . . . . 5  |-  ( ph  ->  I  e.  dom  ( S sSet  <. I ,  E >. ) )
2221adantr 276 . . . 4  |-  ( (
ph  /\  ( Base ` 
ndx )  =  I )  ->  I  e.  dom  ( S sSet  <. I ,  E >. ) )
231, 22eqeltrd 2286 . . 3  |-  ( (
ph  /\  ( Base ` 
ndx )  =  I )  ->  ( Base ` 
ndx )  e.  dom  ( S sSet  <. I ,  E >. ) )
24 basendxnn 13054 . . . . . . . . . . 11  |-  ( Base `  ndx )  e.  NN
2524elexi 2792 . . . . . . . . . 10  |-  ( Base `  ndx )  e.  _V
2625a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e. 
_V )
27 simpr 110 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Base ` 
ndx )  e.  dom  {
<. I ,  E >. } )  ->  ( Base ` 
ndx )  e.  dom  {
<. I ,  E >. } )
287adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Base ` 
ndx )  e.  dom  {
<. I ,  E >. } )  ->  dom  { <. I ,  E >. }  =  { I } )
2927, 28eleqtrd 2288 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Base ` 
ndx )  e.  dom  {
<. I ,  E >. } )  ->  ( Base ` 
ndx )  e.  {
I } )
30 elsni 3664 . . . . . . . . . . 11  |-  ( (
Base `  ndx )  e. 
{ I }  ->  (
Base `  ndx )  =  I )
3129, 30syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( Base ` 
ndx )  e.  dom  {
<. I ,  E >. } )  ->  ( Base ` 
ndx )  =  I )
3231stoic1a 1449 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  -.  ( Base `  ndx )  e. 
dom  { <. I ,  E >. } )
3326, 32eldifd 3187 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e.  ( _V  \  dom  {
<. I ,  E >. } ) )
34 basprssdmsets.b . . . . . . . . 9  |-  ( ph  ->  ( Base `  ndx )  e.  dom  S )
3534adantr 276 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e. 
dom  S )
3633, 35elind 3369 . . . . . . 7  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e.  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  S ) )
37 dmres 5002 . . . . . . 7  |-  dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  =  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  S )
3836, 37eleqtrrdi 2303 . . . . . 6  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e. 
dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
39 elun1 3351 . . . . . 6  |-  ( (
Base `  ndx )  e. 
dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  ->  ( Base `  ndx )  e.  ( dom  ( S  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  dom  {
<. I ,  E >. } ) )
4038, 39syl 14 . . . . 5  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e.  ( dom  ( S  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  dom  {
<. I ,  E >. } ) )
4140, 11eleqtrrdi 2303 . . . 4  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e. 
dom  ( ( S  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
4220adantr 276 . . . 4  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  dom  ( S sSet  <. I ,  E >. )  =  dom  ( ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
4341, 42eleqtrrd 2289 . . 3  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e. 
dom  ( S sSet  <. I ,  E >. )
)
4424nnzi 9435 . . . . 5  |-  ( Base `  ndx )  e.  ZZ
452nnzd 9536 . . . . 5  |-  ( ph  ->  I  e.  ZZ )
46 zdceq 9490 . . . . 5  |-  ( ( ( Base `  ndx )  e.  ZZ  /\  I  e.  ZZ )  -> DECID  ( Base `  ndx )  =  I )
4744, 45, 46sylancr 414 . . . 4  |-  ( ph  -> DECID  (
Base `  ndx )  =  I )
48 exmiddc 840 . . . 4  |-  (DECID  ( Base `  ndx )  =  I  ->  ( ( Base `  ndx )  =  I  \/  -.  ( Base `  ndx )  =  I ) )
4947, 48syl 14 . . 3  |-  ( ph  ->  ( ( Base `  ndx )  =  I  \/  -.  ( Base `  ndx )  =  I )
)
5023, 43, 49mpjaodan 802 . 2  |-  ( ph  ->  ( Base `  ndx )  e.  dom  ( S sSet  <. I ,  E >. ) )
5150, 21prssd 3806 1  |-  ( ph  ->  { ( Base `  ndx ) ,  I }  C_ 
dom  ( S sSet  <. I ,  E >. )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 712  DECID wdc 838    = wceq 1375    e. wcel 2180   _Vcvv 2779    \ cdif 3174    u. cun 3175    i^i cin 3176    C_ wss 3177   {csn 3646   {cpr 3647   <.cop 3649   class class class wbr 4062   dom cdm 4696    |` cres 4698   ` cfv 5294  (class class class)co 5974   NNcn 9078   ZZcz 9414   Struct cstr 12994   ndxcnx 12995   sSet csts 12996   Basecbs 12998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005
This theorem is referenced by:  setsvtx  15817  setsiedg  15818
  Copyright terms: Public domain W3C validator