| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bassetsnn | Unicode version | ||
| Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| Ref | Expression |
|---|---|
| basprssdmsets.s |
|
| bassetsnn.i |
|
| basprssdmsets.w |
|
| basprssdmsets.b |
|
| Ref | Expression |
|---|---|
| bassetsnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | bassetsnn.i |
. . . . . . . . . 10
| |
| 3 | snidg 3695 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | syl 14 |
. . . . . . . . 9
|
| 5 | basprssdmsets.w |
. . . . . . . . . 10
| |
| 6 | dmsnopg 5200 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | syl 14 |
. . . . . . . . 9
|
| 8 | 4, 7 | eleqtrrd 2309 |
. . . . . . . 8
|
| 9 | elun2 3372 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
|
| 11 | dmun 4930 |
. . . . . . 7
| |
| 12 | 10, 11 | eleqtrrdi 2323 |
. . . . . 6
|
| 13 | basprssdmsets.s |
. . . . . . . . 9
| |
| 14 | structex 13052 |
. . . . . . . . 9
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . 8
|
| 16 | opexg 4314 |
. . . . . . . . 9
| |
| 17 | 2, 5, 16 | syl2anc 411 |
. . . . . . . 8
|
| 18 | setsvalg 13070 |
. . . . . . . 8
| |
| 19 | 15, 17, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 19 | dmeqd 4925 |
. . . . . 6
|
| 21 | 12, 20 | eleqtrrd 2309 |
. . . . 5
|
| 22 | 21 | adantr 276 |
. . . 4
|
| 23 | 1, 22 | eqeltrd 2306 |
. . 3
|
| 24 | basendxnn 13096 |
. . . . . . . . . . 11
| |
| 25 | 24 | elexi 2812 |
. . . . . . . . . 10
|
| 26 | 25 | a1i 9 |
. . . . . . . . 9
|
| 27 | simpr 110 |
. . . . . . . . . . . 12
| |
| 28 | 7 | adantr 276 |
. . . . . . . . . . . 12
|
| 29 | 27, 28 | eleqtrd 2308 |
. . . . . . . . . . 11
|
| 30 | elsni 3684 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . 10
|
| 32 | 31 | stoic1a 1469 |
. . . . . . . . 9
|
| 33 | 26, 32 | eldifd 3207 |
. . . . . . . 8
|
| 34 | basprssdmsets.b |
. . . . . . . . 9
| |
| 35 | 34 | adantr 276 |
. . . . . . . 8
|
| 36 | 33, 35 | elind 3389 |
. . . . . . 7
|
| 37 | dmres 5026 |
. . . . . . 7
| |
| 38 | 36, 37 | eleqtrrdi 2323 |
. . . . . 6
|
| 39 | elun1 3371 |
. . . . . 6
| |
| 40 | 38, 39 | syl 14 |
. . . . 5
|
| 41 | 40, 11 | eleqtrrdi 2323 |
. . . 4
|
| 42 | 20 | adantr 276 |
. . . 4
|
| 43 | 41, 42 | eleqtrrd 2309 |
. . 3
|
| 44 | 24 | nnzi 9475 |
. . . . 5
|
| 45 | 2 | nnzd 9576 |
. . . . 5
|
| 46 | zdceq 9530 |
. . . . 5
| |
| 47 | 44, 45, 46 | sylancr 414 |
. . . 4
|
| 48 | exmiddc 841 |
. . . 4
| |
| 49 | 47, 48 | syl 14 |
. . 3
|
| 50 | 23, 43, 49 | mpjaodan 803 |
. 2
|
| 51 | 50, 21 | prssd 3827 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 |
| This theorem is referenced by: setsvtx 15860 setsiedg 15861 |
| Copyright terms: Public domain | W3C validator |