| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bassetsnn | Unicode version | ||
| Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| Ref | Expression |
|---|---|
| basprssdmsets.s |
|
| bassetsnn.i |
|
| basprssdmsets.w |
|
| basprssdmsets.b |
|
| Ref | Expression |
|---|---|
| bassetsnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | bassetsnn.i |
. . . . . . . . . 10
| |
| 3 | snidg 3675 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | syl 14 |
. . . . . . . . 9
|
| 5 | basprssdmsets.w |
. . . . . . . . . 10
| |
| 6 | dmsnopg 5176 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | syl 14 |
. . . . . . . . 9
|
| 8 | 4, 7 | eleqtrrd 2289 |
. . . . . . . 8
|
| 9 | elun2 3352 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
|
| 11 | dmun 4907 |
. . . . . . 7
| |
| 12 | 10, 11 | eleqtrrdi 2303 |
. . . . . 6
|
| 13 | basprssdmsets.s |
. . . . . . . . 9
| |
| 14 | structex 13010 |
. . . . . . . . 9
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . 8
|
| 16 | opexg 4293 |
. . . . . . . . 9
| |
| 17 | 2, 5, 16 | syl2anc 411 |
. . . . . . . 8
|
| 18 | setsvalg 13028 |
. . . . . . . 8
| |
| 19 | 15, 17, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 19 | dmeqd 4902 |
. . . . . 6
|
| 21 | 12, 20 | eleqtrrd 2289 |
. . . . 5
|
| 22 | 21 | adantr 276 |
. . . 4
|
| 23 | 1, 22 | eqeltrd 2286 |
. . 3
|
| 24 | basendxnn 13054 |
. . . . . . . . . . 11
| |
| 25 | 24 | elexi 2792 |
. . . . . . . . . 10
|
| 26 | 25 | a1i 9 |
. . . . . . . . 9
|
| 27 | simpr 110 |
. . . . . . . . . . . 12
| |
| 28 | 7 | adantr 276 |
. . . . . . . . . . . 12
|
| 29 | 27, 28 | eleqtrd 2288 |
. . . . . . . . . . 11
|
| 30 | elsni 3664 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . 10
|
| 32 | 31 | stoic1a 1449 |
. . . . . . . . 9
|
| 33 | 26, 32 | eldifd 3187 |
. . . . . . . 8
|
| 34 | basprssdmsets.b |
. . . . . . . . 9
| |
| 35 | 34 | adantr 276 |
. . . . . . . 8
|
| 36 | 33, 35 | elind 3369 |
. . . . . . 7
|
| 37 | dmres 5002 |
. . . . . . 7
| |
| 38 | 36, 37 | eleqtrrdi 2303 |
. . . . . 6
|
| 39 | elun1 3351 |
. . . . . 6
| |
| 40 | 38, 39 | syl 14 |
. . . . 5
|
| 41 | 40, 11 | eleqtrrdi 2303 |
. . . 4
|
| 42 | 20 | adantr 276 |
. . . 4
|
| 43 | 41, 42 | eleqtrrd 2289 |
. . 3
|
| 44 | 24 | nnzi 9435 |
. . . . 5
|
| 45 | 2 | nnzd 9536 |
. . . . 5
|
| 46 | zdceq 9490 |
. . . . 5
| |
| 47 | 44, 45, 46 | sylancr 414 |
. . . 4
|
| 48 | exmiddc 840 |
. . . 4
| |
| 49 | 47, 48 | syl 14 |
. . 3
|
| 50 | 23, 43, 49 | mpjaodan 802 |
. 2
|
| 51 | 50, 21 | prssd 3806 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-z 9415 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 |
| This theorem is referenced by: setsvtx 15817 setsiedg 15818 |
| Copyright terms: Public domain | W3C validator |