ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bassetsnn Unicode version

Theorem bassetsnn 13097
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
basprssdmsets.s  |-  ( ph  ->  S Struct  X )
bassetsnn.i  |-  ( ph  ->  I  e.  NN )
basprssdmsets.w  |-  ( ph  ->  E  e.  W )
basprssdmsets.b  |-  ( ph  ->  ( Base `  ndx )  e.  dom  S )
Assertion
Ref Expression
bassetsnn  |-  ( ph  ->  { ( Base `  ndx ) ,  I }  C_ 
dom  ( S sSet  <. I ,  E >. )
)

Proof of Theorem bassetsnn
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( (
ph  /\  ( Base ` 
ndx )  =  I )  ->  ( Base ` 
ndx )  =  I )
2 bassetsnn.i . . . . . . . . . 10  |-  ( ph  ->  I  e.  NN )
3 snidg 3695 . . . . . . . . . 10  |-  ( I  e.  NN  ->  I  e.  { I } )
42, 3syl 14 . . . . . . . . 9  |-  ( ph  ->  I  e.  { I } )
5 basprssdmsets.w . . . . . . . . . 10  |-  ( ph  ->  E  e.  W )
6 dmsnopg 5200 . . . . . . . . . 10  |-  ( E  e.  W  ->  dom  {
<. I ,  E >. }  =  { I }
)
75, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  dom  { <. I ,  E >. }  =  {
I } )
84, 7eleqtrrd 2309 . . . . . . . 8  |-  ( ph  ->  I  e.  dom  { <. I ,  E >. } )
9 elun2 3372 . . . . . . . 8  |-  ( I  e.  dom  { <. I ,  E >. }  ->  I  e.  ( dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u. 
dom  { <. I ,  E >. } ) )
108, 9syl 14 . . . . . . 7  |-  ( ph  ->  I  e.  ( dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  dom  { <. I ,  E >. } ) )
11 dmun 4930 . . . . . . 7  |-  dom  (
( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } )  =  ( dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u. 
dom  { <. I ,  E >. } )
1210, 11eleqtrrdi 2323 . . . . . 6  |-  ( ph  ->  I  e.  dom  (
( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
13 basprssdmsets.s . . . . . . . . 9  |-  ( ph  ->  S Struct  X )
14 structex 13052 . . . . . . . . 9  |-  ( S Struct  X  ->  S  e.  _V )
1513, 14syl 14 . . . . . . . 8  |-  ( ph  ->  S  e.  _V )
16 opexg 4314 . . . . . . . . 9  |-  ( ( I  e.  NN  /\  E  e.  W )  -> 
<. I ,  E >.  e. 
_V )
172, 5, 16syl2anc 411 . . . . . . . 8  |-  ( ph  -> 
<. I ,  E >.  e. 
_V )
18 setsvalg 13070 . . . . . . . 8  |-  ( ( S  e.  _V  /\  <.
I ,  E >.  e. 
_V )  ->  ( S sSet  <. I ,  E >. )  =  ( ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
1915, 17, 18syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( S sSet  <. I ,  E >. )  =  ( ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
2019dmeqd 4925 . . . . . 6  |-  ( ph  ->  dom  ( S sSet  <. I ,  E >. )  =  dom  ( ( S  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
2112, 20eleqtrrd 2309 . . . . 5  |-  ( ph  ->  I  e.  dom  ( S sSet  <. I ,  E >. ) )
2221adantr 276 . . . 4  |-  ( (
ph  /\  ( Base ` 
ndx )  =  I )  ->  I  e.  dom  ( S sSet  <. I ,  E >. ) )
231, 22eqeltrd 2306 . . 3  |-  ( (
ph  /\  ( Base ` 
ndx )  =  I )  ->  ( Base ` 
ndx )  e.  dom  ( S sSet  <. I ,  E >. ) )
24 basendxnn 13096 . . . . . . . . . . 11  |-  ( Base `  ndx )  e.  NN
2524elexi 2812 . . . . . . . . . 10  |-  ( Base `  ndx )  e.  _V
2625a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e. 
_V )
27 simpr 110 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Base ` 
ndx )  e.  dom  {
<. I ,  E >. } )  ->  ( Base ` 
ndx )  e.  dom  {
<. I ,  E >. } )
287adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Base ` 
ndx )  e.  dom  {
<. I ,  E >. } )  ->  dom  { <. I ,  E >. }  =  { I } )
2927, 28eleqtrd 2308 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Base ` 
ndx )  e.  dom  {
<. I ,  E >. } )  ->  ( Base ` 
ndx )  e.  {
I } )
30 elsni 3684 . . . . . . . . . . 11  |-  ( (
Base `  ndx )  e. 
{ I }  ->  (
Base `  ndx )  =  I )
3129, 30syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( Base ` 
ndx )  e.  dom  {
<. I ,  E >. } )  ->  ( Base ` 
ndx )  =  I )
3231stoic1a 1469 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  -.  ( Base `  ndx )  e. 
dom  { <. I ,  E >. } )
3326, 32eldifd 3207 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e.  ( _V  \  dom  {
<. I ,  E >. } ) )
34 basprssdmsets.b . . . . . . . . 9  |-  ( ph  ->  ( Base `  ndx )  e.  dom  S )
3534adantr 276 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e. 
dom  S )
3633, 35elind 3389 . . . . . . 7  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e.  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  S ) )
37 dmres 5026 . . . . . . 7  |-  dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  =  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  S )
3836, 37eleqtrrdi 2323 . . . . . 6  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e. 
dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
39 elun1 3371 . . . . . 6  |-  ( (
Base `  ndx )  e. 
dom  ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  ->  ( Base `  ndx )  e.  ( dom  ( S  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  dom  {
<. I ,  E >. } ) )
4038, 39syl 14 . . . . 5  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e.  ( dom  ( S  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  dom  {
<. I ,  E >. } ) )
4140, 11eleqtrrdi 2323 . . . 4  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e. 
dom  ( ( S  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
4220adantr 276 . . . 4  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  dom  ( S sSet  <. I ,  E >. )  =  dom  ( ( S  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
4341, 42eleqtrrd 2309 . . 3  |-  ( (
ph  /\  -.  ( Base `  ndx )  =  I )  ->  ( Base `  ndx )  e. 
dom  ( S sSet  <. I ,  E >. )
)
4424nnzi 9475 . . . . 5  |-  ( Base `  ndx )  e.  ZZ
452nnzd 9576 . . . . 5  |-  ( ph  ->  I  e.  ZZ )
46 zdceq 9530 . . . . 5  |-  ( ( ( Base `  ndx )  e.  ZZ  /\  I  e.  ZZ )  -> DECID  ( Base `  ndx )  =  I )
4744, 45, 46sylancr 414 . . . 4  |-  ( ph  -> DECID  (
Base `  ndx )  =  I )
48 exmiddc 841 . . . 4  |-  (DECID  ( Base `  ndx )  =  I  ->  ( ( Base `  ndx )  =  I  \/  -.  ( Base `  ndx )  =  I ) )
4947, 48syl 14 . . 3  |-  ( ph  ->  ( ( Base `  ndx )  =  I  \/  -.  ( Base `  ndx )  =  I )
)
5023, 43, 49mpjaodan 803 . 2  |-  ( ph  ->  ( Base `  ndx )  e.  dom  ( S sSet  <. I ,  E >. ) )
5150, 21prssd 3827 1  |-  ( ph  ->  { ( Base `  ndx ) ,  I }  C_ 
dom  ( S sSet  <. I ,  E >. )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   _Vcvv 2799    \ cdif 3194    u. cun 3195    i^i cin 3196    C_ wss 3197   {csn 3666   {cpr 3667   <.cop 3669   class class class wbr 4083   dom cdm 4719    |` cres 4721   ` cfv 5318  (class class class)co 6007   NNcn 9118   ZZcz 9454   Struct cstr 13036   ndxcnx 13037   sSet csts 13038   Basecbs 13040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047
This theorem is referenced by:  setsvtx  15860  setsiedg  15861
  Copyright terms: Public domain W3C validator