ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfpr2 Unicode version

Theorem dfpr2 3662
Description: Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfpr2  |-  { A ,  B }  =  {
x  |  ( x  =  A  \/  x  =  B ) }
Distinct variable groups:    x, A    x, B

Proof of Theorem dfpr2
StepHypRef Expression
1 df-pr 3650 . 2  |-  { A ,  B }  =  ( { A }  u.  { B } )
2 elun 3322 . . . 4  |-  ( x  e.  ( { A }  u.  { B } )  <->  ( x  e.  { A }  \/  x  e.  { B } ) )
3 velsn 3660 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
4 velsn 3660 . . . . 5  |-  ( x  e.  { B }  <->  x  =  B )
53, 4orbi12i 766 . . . 4  |-  ( ( x  e.  { A }  \/  x  e.  { B } )  <->  ( x  =  A  \/  x  =  B ) )
62, 5bitri 184 . . 3  |-  ( x  e.  ( { A }  u.  { B } )  <->  ( x  =  A  \/  x  =  B ) )
76abbi2i 2322 . 2  |-  ( { A }  u.  { B } )  =  {
x  |  ( x  =  A  \/  x  =  B ) }
81, 7eqtri 2228 1  |-  { A ,  B }  =  {
x  |  ( x  =  A  \/  x  =  B ) }
Colors of variables: wff set class
Syntax hints:    \/ wo 710    = wceq 1373    e. wcel 2178   {cab 2193    u. cun 3172   {csn 3643   {cpr 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650
This theorem is referenced by:  elprg  3663  nfpr  3693  pwsnss  3858  minmax  11656  xrminmax  11691
  Copyright terms: Public domain W3C validator