ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfpr2 Unicode version

Theorem dfpr2 3579
Description: Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfpr2  |-  { A ,  B }  =  {
x  |  ( x  =  A  \/  x  =  B ) }
Distinct variable groups:    x, A    x, B

Proof of Theorem dfpr2
StepHypRef Expression
1 df-pr 3567 . 2  |-  { A ,  B }  =  ( { A }  u.  { B } )
2 elun 3248 . . . 4  |-  ( x  e.  ( { A }  u.  { B } )  <->  ( x  e.  { A }  \/  x  e.  { B } ) )
3 velsn 3577 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
4 velsn 3577 . . . . 5  |-  ( x  e.  { B }  <->  x  =  B )
53, 4orbi12i 754 . . . 4  |-  ( ( x  e.  { A }  \/  x  e.  { B } )  <->  ( x  =  A  \/  x  =  B ) )
62, 5bitri 183 . . 3  |-  ( x  e.  ( { A }  u.  { B } )  <->  ( x  =  A  \/  x  =  B ) )
76abbi2i 2272 . 2  |-  ( { A }  u.  { B } )  =  {
x  |  ( x  =  A  \/  x  =  B ) }
81, 7eqtri 2178 1  |-  { A ,  B }  =  {
x  |  ( x  =  A  \/  x  =  B ) }
Colors of variables: wff set class
Syntax hints:    \/ wo 698    = wceq 1335    e. wcel 2128   {cab 2143    u. cun 3100   {csn 3560   {cpr 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567
This theorem is referenced by:  elprg  3580  nfpr  3609  pwsnss  3766  minmax  11129  xrminmax  11162
  Copyright terms: Public domain W3C validator