Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixpiinm | Unicode version |
Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.) |
Ref | Expression |
---|---|
ixpiinm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2227 | . . . 4 | |
2 | 1 | cbvexv 1906 | . . 3 |
3 | r19.28mv 3501 | . . . . 5 | |
4 | eliin 3871 | . . . . . . 7 | |
5 | 4 | elv 2730 | . . . . . 6 |
6 | vex 2729 | . . . . . . . 8 | |
7 | 6 | elixp 6671 | . . . . . . 7 |
8 | 7 | ralbii 2472 | . . . . . 6 |
9 | 5, 8 | bitri 183 | . . . . 5 |
10 | 6 | elixp 6671 | . . . . . 6 |
11 | vex 2729 | . . . . . . . . . . 11 | |
12 | 6, 11 | fvex 5506 | . . . . . . . . . 10 |
13 | eliin 3871 | . . . . . . . . . 10 | |
14 | 12, 13 | ax-mp 5 | . . . . . . . . 9 |
15 | 14 | ralbii 2472 | . . . . . . . 8 |
16 | ralcom 2629 | . . . . . . . 8 | |
17 | 15, 16 | bitri 183 | . . . . . . 7 |
18 | 17 | anbi2i 453 | . . . . . 6 |
19 | 10, 18 | bitri 183 | . . . . 5 |
20 | 3, 9, 19 | 3bitr4g 222 | . . . 4 |
21 | 20 | eqrdv 2163 | . . 3 |
22 | 2, 21 | sylbir 134 | . 2 |
23 | 22 | eqcomd 2171 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wral 2444 cvv 2726 ciin 3867 wfn 5183 cfv 5188 cixp 6664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iin 3869 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ixp 6665 |
This theorem is referenced by: ixpintm 6691 |
Copyright terms: Public domain | W3C validator |