ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpiinm Unicode version

Theorem ixpiinm 6702
Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpiinm  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^|_ y  e.  B  C  =  |^|_ y  e.  B  X_ x  e.  A  C
)
Distinct variable groups:    x, y, A   
x, B, y    y,
z, B
Allowed substitution hints:    A( z)    C( x, y, z)

Proof of Theorem ixpiinm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2231 . . . 4  |-  ( y  =  z  ->  (
y  e.  B  <->  z  e.  B ) )
21cbvexv 1911 . . 3  |-  ( E. y  y  e.  B  <->  E. z  z  e.  B
)
3 r19.28mv 3507 . . . . 5  |-  ( E. y  y  e.  B  ->  ( A. y  e.  B  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C
)  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  ( f `  x )  e.  C
) ) )
4 eliin 3878 . . . . . . 7  |-  ( f  e.  _V  ->  (
f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  f  e.  X_ x  e.  A  C
) )
54elv 2734 . . . . . 6  |-  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  f  e.  X_ x  e.  A  C )
6 vex 2733 . . . . . . . 8  |-  f  e. 
_V
76elixp 6683 . . . . . . 7  |-  ( f  e.  X_ x  e.  A  C 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
87ralbii 2476 . . . . . 6  |-  ( A. y  e.  B  f  e.  X_ x  e.  A  C 
<-> 
A. y  e.  B  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
95, 8bitri 183 . . . . 5  |-  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C ) )
106elixp 6683 . . . . . 6  |-  ( f  e.  X_ x  e.  A  |^|_ y  e.  B  C  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  |^|_ y  e.  B  C ) )
11 vex 2733 . . . . . . . . . . 11  |-  x  e. 
_V
126, 11fvex 5516 . . . . . . . . . 10  |-  ( f `
 x )  e. 
_V
13 eliin 3878 . . . . . . . . . 10  |-  ( ( f `  x )  e.  _V  ->  (
( f `  x
)  e.  |^|_ y  e.  B  C  <->  A. y  e.  B  ( f `  x )  e.  C
) )
1412, 13ax-mp 5 . . . . . . . . 9  |-  ( ( f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. y  e.  B  ( f `  x
)  e.  C )
1514ralbii 2476 . . . . . . . 8  |-  ( A. x  e.  A  (
f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. x  e.  A  A. y  e.  B  ( f `  x
)  e.  C )
16 ralcom 2633 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  (
f `  x )  e.  C  <->  A. y  e.  B  A. x  e.  A  ( f `  x
)  e.  C )
1715, 16bitri 183 . . . . . . 7  |-  ( A. x  e.  A  (
f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. y  e.  B  A. x  e.  A  ( f `  x
)  e.  C )
1817anbi2i 454 . . . . . 6  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  |^|_ y  e.  B  C )  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  ( f `  x )  e.  C
) )
1910, 18bitri 183 . . . . 5  |-  ( f  e.  X_ x  e.  A  |^|_ y  e.  B  C  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  (
f `  x )  e.  C ) )
203, 9, 193bitr4g 222 . . . 4  |-  ( E. y  y  e.  B  ->  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  f  e.  X_ x  e.  A  |^|_ y  e.  B  C
) )
2120eqrdv 2168 . . 3  |-  ( E. y  y  e.  B  -> 
|^|_ y  e.  B  X_ x  e.  A  C  =  X_ x  e.  A  |^|_ y  e.  B  C
)
222, 21sylbir 134 . 2  |-  ( E. z  z  e.  B  -> 
|^|_ y  e.  B  X_ x  e.  A  C  =  X_ x  e.  A  |^|_ y  e.  B  C
)
2322eqcomd 2176 1  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^|_ y  e.  B  C  =  |^|_ y  e.  B  X_ x  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   _Vcvv 2730   |^|_ciin 3874    Fn wfn 5193   ` cfv 5198   X_cixp 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iin 3876  df-br 3990  df-opab 4051  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ixp 6677
This theorem is referenced by:  ixpintm  6703
  Copyright terms: Public domain W3C validator