Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixpiinm | Unicode version |
Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.) |
Ref | Expression |
---|---|
ixpiinm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2231 | . . . 4 | |
2 | 1 | cbvexv 1911 | . . 3 |
3 | r19.28mv 3507 | . . . . 5 | |
4 | eliin 3878 | . . . . . . 7 | |
5 | 4 | elv 2734 | . . . . . 6 |
6 | vex 2733 | . . . . . . . 8 | |
7 | 6 | elixp 6683 | . . . . . . 7 |
8 | 7 | ralbii 2476 | . . . . . 6 |
9 | 5, 8 | bitri 183 | . . . . 5 |
10 | 6 | elixp 6683 | . . . . . 6 |
11 | vex 2733 | . . . . . . . . . . 11 | |
12 | 6, 11 | fvex 5516 | . . . . . . . . . 10 |
13 | eliin 3878 | . . . . . . . . . 10 | |
14 | 12, 13 | ax-mp 5 | . . . . . . . . 9 |
15 | 14 | ralbii 2476 | . . . . . . . 8 |
16 | ralcom 2633 | . . . . . . . 8 | |
17 | 15, 16 | bitri 183 | . . . . . . 7 |
18 | 17 | anbi2i 454 | . . . . . 6 |
19 | 10, 18 | bitri 183 | . . . . 5 |
20 | 3, 9, 19 | 3bitr4g 222 | . . . 4 |
21 | 20 | eqrdv 2168 | . . 3 |
22 | 2, 21 | sylbir 134 | . 2 |
23 | 22 | eqcomd 2176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 cvv 2730 ciin 3874 wfn 5193 cfv 5198 cixp 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iin 3876 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ixp 6677 |
This theorem is referenced by: ixpintm 6703 |
Copyright terms: Public domain | W3C validator |