ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpiinm Unicode version

Theorem ixpiinm 6724
Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpiinm  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^|_ y  e.  B  C  =  |^|_ y  e.  B  X_ x  e.  A  C
)
Distinct variable groups:    x, y, A   
x, B, y    y,
z, B
Allowed substitution hints:    A( z)    C( x, y, z)

Proof of Theorem ixpiinm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2238 . . . 4  |-  ( y  =  z  ->  (
y  e.  B  <->  z  e.  B ) )
21cbvexv 1918 . . 3  |-  ( E. y  y  e.  B  <->  E. z  z  e.  B
)
3 r19.28mv 3516 . . . . 5  |-  ( E. y  y  e.  B  ->  ( A. y  e.  B  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C
)  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  ( f `  x )  e.  C
) ) )
4 eliin 3892 . . . . . . 7  |-  ( f  e.  _V  ->  (
f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  f  e.  X_ x  e.  A  C
) )
54elv 2742 . . . . . 6  |-  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  f  e.  X_ x  e.  A  C )
6 vex 2741 . . . . . . . 8  |-  f  e. 
_V
76elixp 6705 . . . . . . 7  |-  ( f  e.  X_ x  e.  A  C 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
87ralbii 2483 . . . . . 6  |-  ( A. y  e.  B  f  e.  X_ x  e.  A  C 
<-> 
A. y  e.  B  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
95, 8bitri 184 . . . . 5  |-  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C ) )
106elixp 6705 . . . . . 6  |-  ( f  e.  X_ x  e.  A  |^|_ y  e.  B  C  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  |^|_ y  e.  B  C ) )
11 vex 2741 . . . . . . . . . . 11  |-  x  e. 
_V
126, 11fvex 5536 . . . . . . . . . 10  |-  ( f `
 x )  e. 
_V
13 eliin 3892 . . . . . . . . . 10  |-  ( ( f `  x )  e.  _V  ->  (
( f `  x
)  e.  |^|_ y  e.  B  C  <->  A. y  e.  B  ( f `  x )  e.  C
) )
1412, 13ax-mp 5 . . . . . . . . 9  |-  ( ( f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. y  e.  B  ( f `  x
)  e.  C )
1514ralbii 2483 . . . . . . . 8  |-  ( A. x  e.  A  (
f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. x  e.  A  A. y  e.  B  ( f `  x
)  e.  C )
16 ralcom 2640 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  (
f `  x )  e.  C  <->  A. y  e.  B  A. x  e.  A  ( f `  x
)  e.  C )
1715, 16bitri 184 . . . . . . 7  |-  ( A. x  e.  A  (
f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. y  e.  B  A. x  e.  A  ( f `  x
)  e.  C )
1817anbi2i 457 . . . . . 6  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  |^|_ y  e.  B  C )  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  ( f `  x )  e.  C
) )
1910, 18bitri 184 . . . . 5  |-  ( f  e.  X_ x  e.  A  |^|_ y  e.  B  C  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  (
f `  x )  e.  C ) )
203, 9, 193bitr4g 223 . . . 4  |-  ( E. y  y  e.  B  ->  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  f  e.  X_ x  e.  A  |^|_ y  e.  B  C
) )
2120eqrdv 2175 . . 3  |-  ( E. y  y  e.  B  -> 
|^|_ y  e.  B  X_ x  e.  A  C  =  X_ x  e.  A  |^|_ y  e.  B  C
)
222, 21sylbir 135 . 2  |-  ( E. z  z  e.  B  -> 
|^|_ y  e.  B  X_ x  e.  A  C  =  X_ x  e.  A  |^|_ y  e.  B  C
)
2322eqcomd 2183 1  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^|_ y  e.  B  C  =  |^|_ y  e.  B  X_ x  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   _Vcvv 2738   |^|_ciin 3888    Fn wfn 5212   ` cfv 5217   X_cixp 6698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iin 3890  df-br 4005  df-opab 4066  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-ixp 6699
This theorem is referenced by:  ixpintm  6725
  Copyright terms: Public domain W3C validator