| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixpiinm | Unicode version | ||
| Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.) |
| Ref | Expression |
|---|---|
| ixpiinm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2257 |
. . . 4
| |
| 2 | 1 | cbvexv 1933 |
. . 3
|
| 3 | r19.28mv 3544 |
. . . . 5
| |
| 4 | eliin 3922 |
. . . . . . 7
| |
| 5 | 4 | elv 2767 |
. . . . . 6
|
| 6 | vex 2766 |
. . . . . . . 8
| |
| 7 | 6 | elixp 6773 |
. . . . . . 7
|
| 8 | 7 | ralbii 2503 |
. . . . . 6
|
| 9 | 5, 8 | bitri 184 |
. . . . 5
|
| 10 | 6 | elixp 6773 |
. . . . . 6
|
| 11 | vex 2766 |
. . . . . . . . . . 11
| |
| 12 | 6, 11 | fvex 5581 |
. . . . . . . . . 10
|
| 13 | eliin 3922 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . . 9
|
| 15 | 14 | ralbii 2503 |
. . . . . . . 8
|
| 16 | ralcom 2660 |
. . . . . . . 8
| |
| 17 | 15, 16 | bitri 184 |
. . . . . . 7
|
| 18 | 17 | anbi2i 457 |
. . . . . 6
|
| 19 | 10, 18 | bitri 184 |
. . . . 5
|
| 20 | 3, 9, 19 | 3bitr4g 223 |
. . . 4
|
| 21 | 20 | eqrdv 2194 |
. . 3
|
| 22 | 2, 21 | sylbir 135 |
. 2
|
| 23 | 22 | eqcomd 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iin 3920 df-br 4035 df-opab 4096 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ixp 6767 |
| This theorem is referenced by: ixpintm 6793 |
| Copyright terms: Public domain | W3C validator |