ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdnn0 Unicode version

Theorem modqmuladdnn0 10513
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdnn0  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
Distinct variable groups:    A, k    B, k    k, M

Proof of Theorem modqmuladdnn0
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  i  e.  ZZ )
21adantr 276 . . . . 5  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
i  e.  ZZ )
3 eqcom 2207 . . . . . . . . 9  |-  ( A  =  ( ( i  x.  M )  +  B )  <->  ( (
i  x.  M )  +  B )  =  A )
4 nn0cn 9305 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  A  e.  CC )
543ad2ant1 1021 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  CC )
65ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  A  e.  CC )
7 nn0z 9392 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN0  ->  A  e.  ZZ )
8 zq 9747 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ZZ  ->  A  e.  QQ )
97, 8syl 14 . . . . . . . . . . . . . . . 16  |-  ( A  e.  NN0  ->  A  e.  QQ )
1093ad2ant1 1021 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  QQ )
1110adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  QQ )
12 simpl2 1004 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  QQ )
13 simpl3 1005 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <  M )
1411, 12, 13modqcld 10473 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  e.  QQ )
15 qcn 9755 . . . . . . . . . . . . 13  |-  ( ( A  mod  M )  e.  QQ  ->  ( A  mod  M )  e.  CC )
1614, 15syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  e.  CC )
17 eleq1 2268 . . . . . . . . . . . . 13  |-  ( ( A  mod  M )  =  B  ->  (
( A  mod  M
)  e.  CC  <->  B  e.  CC ) )
1817adantl 277 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( ( A  mod  M )  e.  CC  <->  B  e.  CC ) )
1916, 18mpbid 147 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  CC )
2019adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  B  e.  CC )
21 zcn 9377 . . . . . . . . . . . 12  |-  ( i  e.  ZZ  ->  i  e.  CC )
2221adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  i  e.  CC )
23 qcn 9755 . . . . . . . . . . . . 13  |-  ( M  e.  QQ  ->  M  e.  CC )
2412, 23syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  CC )
2524adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M  e.  CC )
2622, 25mulcld 8093 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
i  x.  M )  e.  CC )
276, 20, 26subadd2d 8402 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  =  ( i  x.  M )  <->  ( (
i  x.  M )  +  B )  =  A ) )
283, 27bitr4id 199 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  <->  ( A  -  B )  =  ( i  x.  M ) ) )
295adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  CC )
3029, 19subcld 8383 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  -  B
)  e.  CC )
3130adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  -  B )  e.  CC )
32 qre 9746 . . . . . . . . . . . 12  |-  ( M  e.  QQ  ->  M  e.  RR )
33323ad2ant2 1022 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  e.  RR )
3433ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M  e.  RR )
3513adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  0  <  M )
3634, 35gt0ap0d 8702 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M #  0 )
3731, 22, 25, 36divmulap3d 8898 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( ( A  -  B )  /  M
)  =  i  <->  ( A  -  B )  =  ( i  x.  M ) ) )
38 oveq2 5952 . . . . . . . . . . . . . 14  |-  ( B  =  ( A  mod  M )  ->  ( A  -  B )  =  ( A  -  ( A  mod  M ) ) )
3938oveq1d 5959 . . . . . . . . . . . . 13  |-  ( B  =  ( A  mod  M )  ->  ( ( A  -  B )  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M ) )
4039eqcoms 2208 . . . . . . . . . . . 12  |-  ( ( A  mod  M )  =  B  ->  (
( A  -  B
)  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M
) )
4140adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( ( A  -  B )  /  M
)  =  ( ( A  -  ( A  mod  M ) )  /  M ) )
4241adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M
) )
43 modqdiffl 10480 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
449, 43syl3an1 1283 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
4544ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
4642, 45eqtrd 2238 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  /  M )  =  ( |_ `  ( A  /  M
) ) )
4746eqeq1d 2214 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( ( A  -  B )  /  M
)  =  i  <->  ( |_ `  ( A  /  M
) )  =  i ) )
4828, 37, 473bitr2d 216 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  <->  ( |_ `  ( A  /  M
) )  =  i ) )
49 qre 9746 . . . . . . . . . . . 12  |-  ( A  e.  QQ  ->  A  e.  RR )
5010, 49syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  RR )
51 nn0ge0 9320 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  0  <_  A )
52513ad2ant1 1021 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  A )
53 simp3 1002 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <  M )
54 divge0 8946 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( M  e.  RR  /\  0  <  M ) )  ->  0  <_  ( A  /  M ) )
5550, 52, 33, 53, 54syl22anc 1251 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( A  /  M
) )
56 simp2 1001 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  e.  QQ )
5753gt0ne0d 8585 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  =/=  0 )
58 qdivcl 9764 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  M  =/=  0 )  ->  ( A  /  M )  e.  QQ )
5910, 56, 57, 58syl3anc 1250 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  ( A  /  M )  e.  QQ )
60 0z 9383 . . . . . . . . . . 11  |-  0  e.  ZZ
61 flqge 10425 . . . . . . . . . . 11  |-  ( ( ( A  /  M
)  e.  QQ  /\  0  e.  ZZ )  ->  ( 0  <_  ( A  /  M )  <->  0  <_  ( |_ `  ( A  /  M ) ) ) )
6259, 60, 61sylancl 413 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
0  <_  ( A  /  M )  <->  0  <_  ( |_ `  ( A  /  M ) ) ) )
6355, 62mpbid 147 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( |_ `  ( A  /  M ) ) )
64 breq2 4048 . . . . . . . . 9  |-  ( ( |_ `  ( A  /  M ) )  =  i  ->  (
0  <_  ( |_ `  ( A  /  M
) )  <->  0  <_  i ) )
6563, 64syl5ibcom 155 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( |_ `  ( A  /  M ) )  =  i  ->  0  <_  i ) )
6665ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( |_ `  ( A  /  M ) )  =  i  ->  0  <_  i ) )
6748, 66sylbid 150 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  -> 
0  <_  i )
)
6867imp 124 . . . . 5  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
0  <_  i )
69 elnn0z 9385 . . . . 5  |-  ( i  e.  NN0  <->  ( i  e.  ZZ  /\  0  <_ 
i ) )
702, 68, 69sylanbrc 417 . . . 4  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
i  e.  NN0 )
71 oveq1 5951 . . . . . . 7  |-  ( k  =  i  ->  (
k  x.  M )  =  ( i  x.  M ) )
7271oveq1d 5959 . . . . . 6  |-  ( k  =  i  ->  (
( k  x.  M
)  +  B )  =  ( ( i  x.  M )  +  B ) )
7372eqeq2d 2217 . . . . 5  |-  ( k  =  i  ->  ( A  =  ( (
k  x.  M )  +  B )  <->  A  =  ( ( i  x.  M )  +  B
) ) )
7473adantl 277 . . . 4  |-  ( ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  /\  k  =  i )  ->  ( A  =  ( ( k  x.  M
)  +  B )  <-> 
A  =  ( ( i  x.  M )  +  B ) ) )
75 simpr 110 . . . 4  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  ->  A  =  ( (
i  x.  M )  +  B ) )
7670, 74, 75rspcedvd 2883 . . 3  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) )
77 modqmuladdim 10512 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) ) )
787, 77syl3an1 1283 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) ) )
7978imp 124 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) )
8076, 79r19.29a 2649 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) )
8180ex 115 1  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376   E.wrex 2485   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108    - cmin 8243    / cdiv 8745   NN0cn0 9295   ZZcz 9372   QQcq 9740   |_cfl 10411    mod cmo 10467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-q 9741  df-rp 9776  df-ico 10016  df-fl 10413  df-mod 10468
This theorem is referenced by:  2lgslem3a1  15574  2lgslem3b1  15575  2lgslem3c1  15576  2lgslem3d1  15577
  Copyright terms: Public domain W3C validator