ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdnn0 Unicode version

Theorem modqmuladdnn0 10462
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdnn0  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
Distinct variable groups:    A, k    B, k    k, M

Proof of Theorem modqmuladdnn0
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  i  e.  ZZ )
21adantr 276 . . . . 5  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
i  e.  ZZ )
3 eqcom 2198 . . . . . . . . 9  |-  ( A  =  ( ( i  x.  M )  +  B )  <->  ( (
i  x.  M )  +  B )  =  A )
4 nn0cn 9261 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  A  e.  CC )
543ad2ant1 1020 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  CC )
65ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  A  e.  CC )
7 nn0z 9348 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN0  ->  A  e.  ZZ )
8 zq 9702 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ZZ  ->  A  e.  QQ )
97, 8syl 14 . . . . . . . . . . . . . . . 16  |-  ( A  e.  NN0  ->  A  e.  QQ )
1093ad2ant1 1020 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  QQ )
1110adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  QQ )
12 simpl2 1003 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  QQ )
13 simpl3 1004 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <  M )
1411, 12, 13modqcld 10422 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  e.  QQ )
15 qcn 9710 . . . . . . . . . . . . 13  |-  ( ( A  mod  M )  e.  QQ  ->  ( A  mod  M )  e.  CC )
1614, 15syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  e.  CC )
17 eleq1 2259 . . . . . . . . . . . . 13  |-  ( ( A  mod  M )  =  B  ->  (
( A  mod  M
)  e.  CC  <->  B  e.  CC ) )
1817adantl 277 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( ( A  mod  M )  e.  CC  <->  B  e.  CC ) )
1916, 18mpbid 147 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  CC )
2019adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  B  e.  CC )
21 zcn 9333 . . . . . . . . . . . 12  |-  ( i  e.  ZZ  ->  i  e.  CC )
2221adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  i  e.  CC )
23 qcn 9710 . . . . . . . . . . . . 13  |-  ( M  e.  QQ  ->  M  e.  CC )
2412, 23syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  CC )
2524adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M  e.  CC )
2622, 25mulcld 8049 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
i  x.  M )  e.  CC )
276, 20, 26subadd2d 8358 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  =  ( i  x.  M )  <->  ( (
i  x.  M )  +  B )  =  A ) )
283, 27bitr4id 199 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  <->  ( A  -  B )  =  ( i  x.  M ) ) )
295adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  CC )
3029, 19subcld 8339 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  -  B
)  e.  CC )
3130adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  -  B )  e.  CC )
32 qre 9701 . . . . . . . . . . . 12  |-  ( M  e.  QQ  ->  M  e.  RR )
33323ad2ant2 1021 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  e.  RR )
3433ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M  e.  RR )
3513adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  0  <  M )
3634, 35gt0ap0d 8658 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M #  0 )
3731, 22, 25, 36divmulap3d 8854 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( ( A  -  B )  /  M
)  =  i  <->  ( A  -  B )  =  ( i  x.  M ) ) )
38 oveq2 5931 . . . . . . . . . . . . . 14  |-  ( B  =  ( A  mod  M )  ->  ( A  -  B )  =  ( A  -  ( A  mod  M ) ) )
3938oveq1d 5938 . . . . . . . . . . . . 13  |-  ( B  =  ( A  mod  M )  ->  ( ( A  -  B )  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M ) )
4039eqcoms 2199 . . . . . . . . . . . 12  |-  ( ( A  mod  M )  =  B  ->  (
( A  -  B
)  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M
) )
4140adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( ( A  -  B )  /  M
)  =  ( ( A  -  ( A  mod  M ) )  /  M ) )
4241adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M
) )
43 modqdiffl 10429 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
449, 43syl3an1 1282 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
4544ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
4642, 45eqtrd 2229 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  /  M )  =  ( |_ `  ( A  /  M
) ) )
4746eqeq1d 2205 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( ( A  -  B )  /  M
)  =  i  <->  ( |_ `  ( A  /  M
) )  =  i ) )
4828, 37, 473bitr2d 216 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  <->  ( |_ `  ( A  /  M
) )  =  i ) )
49 qre 9701 . . . . . . . . . . . 12  |-  ( A  e.  QQ  ->  A  e.  RR )
5010, 49syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  RR )
51 nn0ge0 9276 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  0  <_  A )
52513ad2ant1 1020 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  A )
53 simp3 1001 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <  M )
54 divge0 8902 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( M  e.  RR  /\  0  <  M ) )  ->  0  <_  ( A  /  M ) )
5550, 52, 33, 53, 54syl22anc 1250 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( A  /  M
) )
56 simp2 1000 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  e.  QQ )
5753gt0ne0d 8541 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  =/=  0 )
58 qdivcl 9719 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  M  =/=  0 )  ->  ( A  /  M )  e.  QQ )
5910, 56, 57, 58syl3anc 1249 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  ( A  /  M )  e.  QQ )
60 0z 9339 . . . . . . . . . . 11  |-  0  e.  ZZ
61 flqge 10374 . . . . . . . . . . 11  |-  ( ( ( A  /  M
)  e.  QQ  /\  0  e.  ZZ )  ->  ( 0  <_  ( A  /  M )  <->  0  <_  ( |_ `  ( A  /  M ) ) ) )
6259, 60, 61sylancl 413 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
0  <_  ( A  /  M )  <->  0  <_  ( |_ `  ( A  /  M ) ) ) )
6355, 62mpbid 147 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( |_ `  ( A  /  M ) ) )
64 breq2 4038 . . . . . . . . 9  |-  ( ( |_ `  ( A  /  M ) )  =  i  ->  (
0  <_  ( |_ `  ( A  /  M
) )  <->  0  <_  i ) )
6563, 64syl5ibcom 155 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( |_ `  ( A  /  M ) )  =  i  ->  0  <_  i ) )
6665ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( |_ `  ( A  /  M ) )  =  i  ->  0  <_  i ) )
6748, 66sylbid 150 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  -> 
0  <_  i )
)
6867imp 124 . . . . 5  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
0  <_  i )
69 elnn0z 9341 . . . . 5  |-  ( i  e.  NN0  <->  ( i  e.  ZZ  /\  0  <_ 
i ) )
702, 68, 69sylanbrc 417 . . . 4  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
i  e.  NN0 )
71 oveq1 5930 . . . . . . 7  |-  ( k  =  i  ->  (
k  x.  M )  =  ( i  x.  M ) )
7271oveq1d 5938 . . . . . 6  |-  ( k  =  i  ->  (
( k  x.  M
)  +  B )  =  ( ( i  x.  M )  +  B ) )
7372eqeq2d 2208 . . . . 5  |-  ( k  =  i  ->  ( A  =  ( (
k  x.  M )  +  B )  <->  A  =  ( ( i  x.  M )  +  B
) ) )
7473adantl 277 . . . 4  |-  ( ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  /\  k  =  i )  ->  ( A  =  ( ( k  x.  M
)  +  B )  <-> 
A  =  ( ( i  x.  M )  +  B ) ) )
75 simpr 110 . . . 4  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  ->  A  =  ( (
i  x.  M )  +  B ) )
7670, 74, 75rspcedvd 2874 . . 3  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) )
77 modqmuladdim 10461 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) ) )
787, 77syl3an1 1282 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) ) )
7978imp 124 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) )
8076, 79r19.29a 2640 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) )
8180ex 115 1  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   E.wrex 2476   class class class wbr 4034   ` cfv 5259  (class class class)co 5923   CCcc 7879   RRcr 7880   0cc0 7881    + caddc 7884    x. cmul 7886    < clt 8063    <_ cle 8064    - cmin 8199    / cdiv 8701   NN0cn0 9251   ZZcz 9328   QQcq 9695   |_cfl 10360    mod cmo 10416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-n0 9252  df-z 9329  df-q 9696  df-rp 9731  df-ico 9971  df-fl 10362  df-mod 10417
This theorem is referenced by:  2lgslem3a1  15348  2lgslem3b1  15349  2lgslem3c1  15350  2lgslem3d1  15351
  Copyright terms: Public domain W3C validator