ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringinvnz1ne0 Unicode version

Theorem ringinvnz1ne0 13299
Description: In a unital ring, a left invertible element is different from zero iff  .1.  =/=  .0.. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b  |-  B  =  ( Base `  R
)
ringinvnzdiv.t  |-  .x.  =  ( .r `  R )
ringinvnzdiv.u  |-  .1.  =  ( 1r `  R )
ringinvnzdiv.z  |-  .0.  =  ( 0g `  R )
ringinvnzdiv.r  |-  ( ph  ->  R  e.  Ring )
ringinvnzdiv.x  |-  ( ph  ->  X  e.  B )
ringinvnzdiv.a  |-  ( ph  ->  E. a  e.  B  ( a  .x.  X
)  =  .1.  )
Assertion
Ref Expression
ringinvnz1ne0  |-  ( ph  ->  ( X  =/=  .0.  <->  .1.  =/=  .0.  ) )
Distinct variable groups:    X, a    .0. , a    .1. , a    .x. , a    ph, a
Allowed substitution hints:    B( a)    R( a)

Proof of Theorem ringinvnz1ne0
StepHypRef Expression
1 oveq2 5896 . . . . 5  |-  ( X  =  .0.  ->  (
a  .x.  X )  =  ( a  .x.  .0.  ) )
2 ringinvnzdiv.r . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
3 ringinvnzdiv.b . . . . . . . 8  |-  B  =  ( Base `  R
)
4 ringinvnzdiv.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
5 ringinvnzdiv.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
63, 4, 5ringrz 13296 . . . . . . 7  |-  ( ( R  e.  Ring  /\  a  e.  B )  ->  (
a  .x.  .0.  )  =  .0.  )
72, 6sylan 283 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
a  .x.  .0.  )  =  .0.  )
8 eqeq12 2200 . . . . . . . 8  |-  ( ( ( a  .x.  X
)  =  .1.  /\  ( a  .x.  .0.  )  =  .0.  )  ->  ( ( a  .x.  X )  =  ( a  .x.  .0.  )  <->  .1.  =  .0.  ) )
98biimpd 144 . . . . . . 7  |-  ( ( ( a  .x.  X
)  =  .1.  /\  ( a  .x.  .0.  )  =  .0.  )  ->  ( ( a  .x.  X )  =  ( a  .x.  .0.  )  ->  .1.  =  .0.  )
)
109ex 115 . . . . . 6  |-  ( ( a  .x.  X )  =  .1.  ->  (
( a  .x.  .0.  )  =  .0.  ->  ( ( a  .x.  X
)  =  ( a 
.x.  .0.  )  ->  .1.  =  .0.  ) ) )
117, 10mpan9 281 . . . . 5  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (
( a  .x.  X
)  =  ( a 
.x.  .0.  )  ->  .1.  =  .0.  ) )
121, 11syl5 32 . . . 4  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  ( X  =  .0.  ->  .1.  =  .0.  ) )
13 oveq2 5896 . . . . 5  |-  (  .1.  =  .0.  ->  ( X  .x.  .1.  )  =  ( X  .x.  .0.  ) )
14 ringinvnzdiv.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
15 ringinvnzdiv.u . . . . . . . . . 10  |-  .1.  =  ( 1r `  R )
163, 4, 15ringridm 13276 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .1.  )  =  X )
173, 4, 5ringrz 13296 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
1816, 17eqeq12d 2202 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( X  .x.  .1.  )  =  ( X  .x.  .0.  )  <->  X  =  .0.  ) )
1918biimpd 144 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( X  .x.  .1.  )  =  ( X  .x.  .0.  )  ->  X  =  .0.  ) )
202, 14, 19syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( X  .x.  .1.  )  =  ( X  .x.  .0.  )  ->  X  =  .0.  )
)
2120ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (
( X  .x.  .1.  )  =  ( X  .x.  .0.  )  ->  X  =  .0.  ) )
2213, 21syl5 32 . . . 4  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (  .1.  =  .0.  ->  X  =  .0.  ) )
2312, 22impbid 129 . . 3  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  ( X  =  .0.  <->  .1.  =  .0.  ) )
24 ringinvnzdiv.a . . 3  |-  ( ph  ->  E. a  e.  B  ( a  .x.  X
)  =  .1.  )
2523, 24r19.29a 2630 . 2  |-  ( ph  ->  ( X  =  .0.  <->  .1.  =  .0.  ) )
2625necon3bid 2398 1  |-  ( ph  ->  ( X  =/=  .0.  <->  .1.  =/=  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158    =/= wne 2357   E.wrex 2466   ` cfv 5228  (class class class)co 5888   Basecbs 12476   .rcmulr 12552   0gc0g 12723   1rcur 13211   Ringcrg 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-3 8993  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-plusg 12564  df-mulr 12565  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12902  df-mgp 13173  df-ur 13212  df-ring 13250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator