ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringinvnz1ne0 Unicode version

Theorem ringinvnz1ne0 13844
Description: In a unital ring, a left invertible element is different from zero iff  .1.  =/=  .0.. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b  |-  B  =  ( Base `  R
)
ringinvnzdiv.t  |-  .x.  =  ( .r `  R )
ringinvnzdiv.u  |-  .1.  =  ( 1r `  R )
ringinvnzdiv.z  |-  .0.  =  ( 0g `  R )
ringinvnzdiv.r  |-  ( ph  ->  R  e.  Ring )
ringinvnzdiv.x  |-  ( ph  ->  X  e.  B )
ringinvnzdiv.a  |-  ( ph  ->  E. a  e.  B  ( a  .x.  X
)  =  .1.  )
Assertion
Ref Expression
ringinvnz1ne0  |-  ( ph  ->  ( X  =/=  .0.  <->  .1.  =/=  .0.  ) )
Distinct variable groups:    X, a    .0. , a    .1. , a    .x. , a    ph, a
Allowed substitution hints:    B( a)    R( a)

Proof of Theorem ringinvnz1ne0
StepHypRef Expression
1 oveq2 5954 . . . . 5  |-  ( X  =  .0.  ->  (
a  .x.  X )  =  ( a  .x.  .0.  ) )
2 ringinvnzdiv.r . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
3 ringinvnzdiv.b . . . . . . . 8  |-  B  =  ( Base `  R
)
4 ringinvnzdiv.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
5 ringinvnzdiv.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
63, 4, 5ringrz 13839 . . . . . . 7  |-  ( ( R  e.  Ring  /\  a  e.  B )  ->  (
a  .x.  .0.  )  =  .0.  )
72, 6sylan 283 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
a  .x.  .0.  )  =  .0.  )
8 eqeq12 2218 . . . . . . . 8  |-  ( ( ( a  .x.  X
)  =  .1.  /\  ( a  .x.  .0.  )  =  .0.  )  ->  ( ( a  .x.  X )  =  ( a  .x.  .0.  )  <->  .1.  =  .0.  ) )
98biimpd 144 . . . . . . 7  |-  ( ( ( a  .x.  X
)  =  .1.  /\  ( a  .x.  .0.  )  =  .0.  )  ->  ( ( a  .x.  X )  =  ( a  .x.  .0.  )  ->  .1.  =  .0.  )
)
109ex 115 . . . . . 6  |-  ( ( a  .x.  X )  =  .1.  ->  (
( a  .x.  .0.  )  =  .0.  ->  ( ( a  .x.  X
)  =  ( a 
.x.  .0.  )  ->  .1.  =  .0.  ) ) )
117, 10mpan9 281 . . . . 5  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (
( a  .x.  X
)  =  ( a 
.x.  .0.  )  ->  .1.  =  .0.  ) )
121, 11syl5 32 . . . 4  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  ( X  =  .0.  ->  .1.  =  .0.  ) )
13 oveq2 5954 . . . . 5  |-  (  .1.  =  .0.  ->  ( X  .x.  .1.  )  =  ( X  .x.  .0.  ) )
14 ringinvnzdiv.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
15 ringinvnzdiv.u . . . . . . . . . 10  |-  .1.  =  ( 1r `  R )
163, 4, 15ringridm 13819 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .1.  )  =  X )
173, 4, 5ringrz 13839 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
1816, 17eqeq12d 2220 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( X  .x.  .1.  )  =  ( X  .x.  .0.  )  <->  X  =  .0.  ) )
1918biimpd 144 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( X  .x.  .1.  )  =  ( X  .x.  .0.  )  ->  X  =  .0.  ) )
202, 14, 19syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( X  .x.  .1.  )  =  ( X  .x.  .0.  )  ->  X  =  .0.  )
)
2120ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (
( X  .x.  .1.  )  =  ( X  .x.  .0.  )  ->  X  =  .0.  ) )
2213, 21syl5 32 . . . 4  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (  .1.  =  .0.  ->  X  =  .0.  ) )
2312, 22impbid 129 . . 3  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  ( X  =  .0.  <->  .1.  =  .0.  ) )
24 ringinvnzdiv.a . . 3  |-  ( ph  ->  E. a  e.  B  ( a  .x.  X
)  =  .1.  )
2523, 24r19.29a 2649 . 2  |-  ( ph  ->  ( X  =  .0.  <->  .1.  =  .0.  ) )
2625necon3bid 2417 1  |-  ( ph  ->  ( X  =/=  .0.  <->  .1.  =/=  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    =/= wne 2376   E.wrex 2485   ` cfv 5272  (class class class)co 5946   Basecbs 12865   .rcmulr 12943   0gc0g 13121   1rcur 13754   Ringcrg 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-plusg 12955  df-mulr 12956  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-mgp 13716  df-ur 13755  df-ring 13793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator