ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmid Unicode version

Theorem mhmid 13647
Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
ghmgrp.x  |-  X  =  ( Base `  G
)
ghmgrp.y  |-  Y  =  ( Base `  H
)
ghmgrp.p  |-  .+  =  ( +g  `  G )
ghmgrp.q  |-  .+^  =  ( +g  `  H )
ghmgrp.1  |-  ( ph  ->  F : X -onto-> Y
)
mhmmnd.3  |-  ( ph  ->  G  e.  Mnd )
mhmid.0  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
mhmid  |-  ( ph  ->  ( F `  .0.  )  =  ( 0g `  H ) )
Distinct variable groups:    x, F, y   
x, G, y    x,  .+ , y    x, H, y   
x, X, y    x, Y, y    x,  .+^ , y    ph, x, y    x,  .0. , y

Proof of Theorem mhmid
Dummy variables  a  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp.y . 2  |-  Y  =  ( Base `  H
)
2 eqid 2229 . 2  |-  ( 0g
`  H )  =  ( 0g `  H
)
3 ghmgrp.q . 2  |-  .+^  =  ( +g  `  H )
4 ghmgrp.1 . . . 4  |-  ( ph  ->  F : X -onto-> Y
)
5 fof 5547 . . . 4  |-  ( F : X -onto-> Y  ->  F : X --> Y )
64, 5syl 14 . . 3  |-  ( ph  ->  F : X --> Y )
7 mhmmnd.3 . . . 4  |-  ( ph  ->  G  e.  Mnd )
8 ghmgrp.x . . . . 5  |-  X  =  ( Base `  G
)
9 mhmid.0 . . . . 5  |-  .0.  =  ( 0g `  G )
108, 9mndidcl 13458 . . . 4  |-  ( G  e.  Mnd  ->  .0.  e.  X )
117, 10syl 14 . . 3  |-  ( ph  ->  .0.  e.  X )
126, 11ffvelcdmd 5770 . 2  |-  ( ph  ->  ( F `  .0.  )  e.  Y )
13 simplll 533 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ph )
14 ghmgrp.f . . . . . . 7  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
1513, 14syl3an1 1304 . . . . . 6  |-  ( ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) ) )
167ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  G  e.  Mnd )
1716, 10syl 14 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  .0.  e.  X )
18 simplr 528 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  i  e.  X )
1915, 17, 18mhmlem 13646 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  (  .0.  .+  i
) )  =  ( ( F `  .0.  )  .+^  ( F `  i ) ) )
20 ghmgrp.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
218, 20, 9mndlid 13463 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  i  e.  X )  ->  (  .0.  .+  i
)  =  i )
2216, 18, 21syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  (  .0.  .+  i )  =  i )
2322fveq2d 5630 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  (  .0.  .+  i
) )  =  ( F `  i ) )
2419, 23eqtr3d 2264 . . . 4  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  .0.  )  .+^  ( F `  i ) )  =  ( F `
 i ) )
25 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  i )  =  a )
2625oveq2d 6016 . . . 4  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  .0.  )  .+^  ( F `  i ) )  =  ( ( F `  .0.  )  .+^  a ) )
2724, 26, 253eqtr3d 2270 . . 3  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  .0.  )  .+^  a )  =  a )
28 foelcdmi 5685 . . . 4  |-  ( ( F : X -onto-> Y  /\  a  e.  Y
)  ->  E. i  e.  X  ( F `  i )  =  a )
294, 28sylan 283 . . 3  |-  ( (
ph  /\  a  e.  Y )  ->  E. i  e.  X  ( F `  i )  =  a )
3027, 29r19.29a 2674 . 2  |-  ( (
ph  /\  a  e.  Y )  ->  (
( F `  .0.  )  .+^  a )  =  a )
3115, 18, 17mhmlem 13646 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( i  .+  .0.  ) )  =  ( ( F `  i
)  .+^  ( F `  .0.  ) ) )
328, 20, 9mndrid 13464 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  i  e.  X )  ->  ( i  .+  .0.  )  =  i )
3316, 18, 32syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( i  .+  .0.  )  =  i )
3433fveq2d 5630 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( i  .+  .0.  ) )  =  ( F `  i ) )
3531, 34eqtr3d 2264 . . . 4  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  i )  .+^  ( F `  .0.  ) )  =  ( F `  i ) )
3625oveq1d 6015 . . . 4  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  i )  .+^  ( F `  .0.  ) )  =  ( a  .+^  ( F `  .0.  ) ) )
3735, 36, 253eqtr3d 2270 . . 3  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( a  .+^  ( F `  .0.  ) )  =  a )
3837, 29r19.29a 2674 . 2  |-  ( (
ph  /\  a  e.  Y )  ->  (
a  .+^  ( F `  .0.  ) )  =  a )
391, 2, 3, 12, 30, 38ismgmid2 13408 1  |-  ( ph  ->  ( F `  .0.  )  =  ( 0g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   -->wf 5313   -onto->wfo 5315   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284   Mndcmnd 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445
This theorem is referenced by:  mhmfmhm  13649  ghmgrp  13650
  Copyright terms: Public domain W3C validator