Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mhmid | Unicode version |
Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.) |
Ref | Expression |
---|---|
ghmgrp.f | |
ghmgrp.x | |
ghmgrp.y | |
ghmgrp.p | |
ghmgrp.q | |
ghmgrp.1 | |
mhmmnd.3 | |
mhmid.0 |
Ref | Expression |
---|---|
mhmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp.y | . 2 | |
2 | eqid 2173 | . 2 | |
3 | ghmgrp.q | . 2 | |
4 | ghmgrp.1 | . . . 4 | |
5 | fof 5427 | . . . 4 | |
6 | 4, 5 | syl 14 | . . 3 |
7 | mhmmnd.3 | . . . 4 | |
8 | ghmgrp.x | . . . . 5 | |
9 | mhmid.0 | . . . . 5 | |
10 | 8, 9 | mndidcl 12693 | . . . 4 |
11 | 7, 10 | syl 14 | . . 3 |
12 | 6, 11 | ffvelrnd 5641 | . 2 |
13 | simplll 531 | . . . . . . 7 | |
14 | ghmgrp.f | . . . . . . 7 | |
15 | 13, 14 | syl3an1 1269 | . . . . . 6 |
16 | 7 | ad3antrrr 492 | . . . . . . 7 |
17 | 16, 10 | syl 14 | . . . . . 6 |
18 | simplr 528 | . . . . . 6 | |
19 | 15, 17, 18 | mhmlem 12834 | . . . . 5 |
20 | ghmgrp.p | . . . . . . . 8 | |
21 | 8, 20, 9 | mndlid 12698 | . . . . . . 7 |
22 | 16, 18, 21 | syl2anc 411 | . . . . . 6 |
23 | 22 | fveq2d 5508 | . . . . 5 |
24 | 19, 23 | eqtr3d 2208 | . . . 4 |
25 | simpr 110 | . . . . 5 | |
26 | 25 | oveq2d 5878 | . . . 4 |
27 | 24, 26, 25 | 3eqtr3d 2214 | . . 3 |
28 | foelrni 5557 | . . . 4 | |
29 | 4, 28 | sylan 283 | . . 3 |
30 | 27, 29 | r19.29a 2616 | . 2 |
31 | 15, 18, 17 | mhmlem 12834 | . . . . 5 |
32 | 8, 20, 9 | mndrid 12699 | . . . . . . 7 |
33 | 16, 18, 32 | syl2anc 411 | . . . . . 6 |
34 | 33 | fveq2d 5508 | . . . . 5 |
35 | 31, 34 | eqtr3d 2208 | . . . 4 |
36 | 25 | oveq1d 5877 | . . . 4 |
37 | 35, 36, 25 | 3eqtr3d 2214 | . . 3 |
38 | 37, 29 | r19.29a 2616 | . 2 |
39 | 1, 2, 3, 12, 30, 38 | ismgmid2 12661 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 976 wceq 1351 wcel 2144 wrex 2452 wf 5201 wfo 5203 cfv 5205 (class class class)co 5862 cbs 12425 cplusg 12489 c0g 12623 cmnd 12679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-sep 4113 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-cnex 7874 ax-resscn 7875 ax-1re 7877 ax-addrcl 7880 |
This theorem depends on definitions: df-bi 117 df-3an 978 df-tru 1354 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ral 2456 df-rex 2457 df-reu 2458 df-rmo 2459 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-un 3128 df-in 3130 df-ss 3137 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-br 3996 df-opab 4057 df-mpt 4058 df-id 4284 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-fo 5211 df-fv 5213 df-riota 5818 df-ov 5865 df-inn 8888 df-2 8946 df-ndx 12428 df-slot 12429 df-base 12431 df-plusg 12502 df-0g 12625 df-mgm 12637 df-sgrp 12670 df-mnd 12680 |
This theorem is referenced by: mhmfmhm 12837 ghmgrp 12838 |
Copyright terms: Public domain | W3C validator |