ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmid Unicode version

Theorem mhmid 13188
Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
ghmgrp.x  |-  X  =  ( Base `  G
)
ghmgrp.y  |-  Y  =  ( Base `  H
)
ghmgrp.p  |-  .+  =  ( +g  `  G )
ghmgrp.q  |-  .+^  =  ( +g  `  H )
ghmgrp.1  |-  ( ph  ->  F : X -onto-> Y
)
mhmmnd.3  |-  ( ph  ->  G  e.  Mnd )
mhmid.0  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
mhmid  |-  ( ph  ->  ( F `  .0.  )  =  ( 0g `  H ) )
Distinct variable groups:    x, F, y   
x, G, y    x,  .+ , y    x, H, y   
x, X, y    x, Y, y    x,  .+^ , y    ph, x, y    x,  .0. , y

Proof of Theorem mhmid
Dummy variables  a  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp.y . 2  |-  Y  =  ( Base `  H
)
2 eqid 2193 . 2  |-  ( 0g
`  H )  =  ( 0g `  H
)
3 ghmgrp.q . 2  |-  .+^  =  ( +g  `  H )
4 ghmgrp.1 . . . 4  |-  ( ph  ->  F : X -onto-> Y
)
5 fof 5477 . . . 4  |-  ( F : X -onto-> Y  ->  F : X --> Y )
64, 5syl 14 . . 3  |-  ( ph  ->  F : X --> Y )
7 mhmmnd.3 . . . 4  |-  ( ph  ->  G  e.  Mnd )
8 ghmgrp.x . . . . 5  |-  X  =  ( Base `  G
)
9 mhmid.0 . . . . 5  |-  .0.  =  ( 0g `  G )
108, 9mndidcl 13014 . . . 4  |-  ( G  e.  Mnd  ->  .0.  e.  X )
117, 10syl 14 . . 3  |-  ( ph  ->  .0.  e.  X )
126, 11ffvelcdmd 5695 . 2  |-  ( ph  ->  ( F `  .0.  )  e.  Y )
13 simplll 533 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ph )
14 ghmgrp.f . . . . . . 7  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
1513, 14syl3an1 1282 . . . . . 6  |-  ( ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) ) )
167ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  G  e.  Mnd )
1716, 10syl 14 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  .0.  e.  X )
18 simplr 528 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  i  e.  X )
1915, 17, 18mhmlem 13187 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  (  .0.  .+  i
) )  =  ( ( F `  .0.  )  .+^  ( F `  i ) ) )
20 ghmgrp.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
218, 20, 9mndlid 13019 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  i  e.  X )  ->  (  .0.  .+  i
)  =  i )
2216, 18, 21syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  (  .0.  .+  i )  =  i )
2322fveq2d 5559 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  (  .0.  .+  i
) )  =  ( F `  i ) )
2419, 23eqtr3d 2228 . . . 4  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  .0.  )  .+^  ( F `  i ) )  =  ( F `
 i ) )
25 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  i )  =  a )
2625oveq2d 5935 . . . 4  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  .0.  )  .+^  ( F `  i ) )  =  ( ( F `  .0.  )  .+^  a ) )
2724, 26, 253eqtr3d 2234 . . 3  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  .0.  )  .+^  a )  =  a )
28 foelcdmi 5610 . . . 4  |-  ( ( F : X -onto-> Y  /\  a  e.  Y
)  ->  E. i  e.  X  ( F `  i )  =  a )
294, 28sylan 283 . . 3  |-  ( (
ph  /\  a  e.  Y )  ->  E. i  e.  X  ( F `  i )  =  a )
3027, 29r19.29a 2637 . 2  |-  ( (
ph  /\  a  e.  Y )  ->  (
( F `  .0.  )  .+^  a )  =  a )
3115, 18, 17mhmlem 13187 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( i  .+  .0.  ) )  =  ( ( F `  i
)  .+^  ( F `  .0.  ) ) )
328, 20, 9mndrid 13020 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  i  e.  X )  ->  ( i  .+  .0.  )  =  i )
3316, 18, 32syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( i  .+  .0.  )  =  i )
3433fveq2d 5559 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( i  .+  .0.  ) )  =  ( F `  i ) )
3531, 34eqtr3d 2228 . . . 4  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  i )  .+^  ( F `  .0.  ) )  =  ( F `  i ) )
3625oveq1d 5934 . . . 4  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  i )  .+^  ( F `  .0.  ) )  =  ( a  .+^  ( F `  .0.  ) ) )
3735, 36, 253eqtr3d 2234 . . 3  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( a  .+^  ( F `  .0.  ) )  =  a )
3837, 29r19.29a 2637 . 2  |-  ( (
ph  /\  a  e.  Y )  ->  (
a  .+^  ( F `  .0.  ) )  =  a )
391, 2, 3, 12, 30, 38ismgmid2 12966 1  |-  ( ph  ->  ( F `  .0.  )  =  ( 0g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473   -->wf 5251   -onto->wfo 5253   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Mndcmnd 13000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001
This theorem is referenced by:  mhmfmhm  13190  ghmgrp  13191
  Copyright terms: Public domain W3C validator