| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmid | Unicode version | ||
| Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmgrp.f |
|
| ghmgrp.x |
|
| ghmgrp.y |
|
| ghmgrp.p |
|
| ghmgrp.q |
|
| ghmgrp.1 |
|
| mhmmnd.3 |
|
| mhmid.0 |
|
| Ref | Expression |
|---|---|
| mhmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.y |
. 2
| |
| 2 | eqid 2205 |
. 2
| |
| 3 | ghmgrp.q |
. 2
| |
| 4 | ghmgrp.1 |
. . . 4
| |
| 5 | fof 5498 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | mhmmnd.3 |
. . . 4
| |
| 8 | ghmgrp.x |
. . . . 5
| |
| 9 | mhmid.0 |
. . . . 5
| |
| 10 | 8, 9 | mndidcl 13262 |
. . . 4
|
| 11 | 7, 10 | syl 14 |
. . 3
|
| 12 | 6, 11 | ffvelcdmd 5716 |
. 2
|
| 13 | simplll 533 |
. . . . . . 7
| |
| 14 | ghmgrp.f |
. . . . . . 7
| |
| 15 | 13, 14 | syl3an1 1283 |
. . . . . 6
|
| 16 | 7 | ad3antrrr 492 |
. . . . . . 7
|
| 17 | 16, 10 | syl 14 |
. . . . . 6
|
| 18 | simplr 528 |
. . . . . 6
| |
| 19 | 15, 17, 18 | mhmlem 13450 |
. . . . 5
|
| 20 | ghmgrp.p |
. . . . . . . 8
| |
| 21 | 8, 20, 9 | mndlid 13267 |
. . . . . . 7
|
| 22 | 16, 18, 21 | syl2anc 411 |
. . . . . 6
|
| 23 | 22 | fveq2d 5580 |
. . . . 5
|
| 24 | 19, 23 | eqtr3d 2240 |
. . . 4
|
| 25 | simpr 110 |
. . . . 5
| |
| 26 | 25 | oveq2d 5960 |
. . . 4
|
| 27 | 24, 26, 25 | 3eqtr3d 2246 |
. . 3
|
| 28 | foelcdmi 5631 |
. . . 4
| |
| 29 | 4, 28 | sylan 283 |
. . 3
|
| 30 | 27, 29 | r19.29a 2649 |
. 2
|
| 31 | 15, 18, 17 | mhmlem 13450 |
. . . . 5
|
| 32 | 8, 20, 9 | mndrid 13268 |
. . . . . . 7
|
| 33 | 16, 18, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 33 | fveq2d 5580 |
. . . . 5
|
| 35 | 31, 34 | eqtr3d 2240 |
. . . 4
|
| 36 | 25 | oveq1d 5959 |
. . . 4
|
| 37 | 35, 36, 25 | 3eqtr3d 2246 |
. . 3
|
| 38 | 37, 29 | r19.29a 2649 |
. 2
|
| 39 | 1, 2, 3, 12, 30, 38 | ismgmid2 13212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 df-riota 5899 df-ov 5947 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 |
| This theorem is referenced by: mhmfmhm 13453 ghmgrp 13454 |
| Copyright terms: Public domain | W3C validator |