| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmid | Unicode version | ||
| Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmgrp.f |
|
| ghmgrp.x |
|
| ghmgrp.y |
|
| ghmgrp.p |
|
| ghmgrp.q |
|
| ghmgrp.1 |
|
| mhmmnd.3 |
|
| mhmid.0 |
|
| Ref | Expression |
|---|---|
| mhmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.y |
. 2
| |
| 2 | eqid 2196 |
. 2
| |
| 3 | ghmgrp.q |
. 2
| |
| 4 | ghmgrp.1 |
. . . 4
| |
| 5 | fof 5480 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | mhmmnd.3 |
. . . 4
| |
| 8 | ghmgrp.x |
. . . . 5
| |
| 9 | mhmid.0 |
. . . . 5
| |
| 10 | 8, 9 | mndidcl 13071 |
. . . 4
|
| 11 | 7, 10 | syl 14 |
. . 3
|
| 12 | 6, 11 | ffvelcdmd 5698 |
. 2
|
| 13 | simplll 533 |
. . . . . . 7
| |
| 14 | ghmgrp.f |
. . . . . . 7
| |
| 15 | 13, 14 | syl3an1 1282 |
. . . . . 6
|
| 16 | 7 | ad3antrrr 492 |
. . . . . . 7
|
| 17 | 16, 10 | syl 14 |
. . . . . 6
|
| 18 | simplr 528 |
. . . . . 6
| |
| 19 | 15, 17, 18 | mhmlem 13244 |
. . . . 5
|
| 20 | ghmgrp.p |
. . . . . . . 8
| |
| 21 | 8, 20, 9 | mndlid 13076 |
. . . . . . 7
|
| 22 | 16, 18, 21 | syl2anc 411 |
. . . . . 6
|
| 23 | 22 | fveq2d 5562 |
. . . . 5
|
| 24 | 19, 23 | eqtr3d 2231 |
. . . 4
|
| 25 | simpr 110 |
. . . . 5
| |
| 26 | 25 | oveq2d 5938 |
. . . 4
|
| 27 | 24, 26, 25 | 3eqtr3d 2237 |
. . 3
|
| 28 | foelcdmi 5613 |
. . . 4
| |
| 29 | 4, 28 | sylan 283 |
. . 3
|
| 30 | 27, 29 | r19.29a 2640 |
. 2
|
| 31 | 15, 18, 17 | mhmlem 13244 |
. . . . 5
|
| 32 | 8, 20, 9 | mndrid 13077 |
. . . . . . 7
|
| 33 | 16, 18, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 33 | fveq2d 5562 |
. . . . 5
|
| 35 | 31, 34 | eqtr3d 2231 |
. . . 4
|
| 36 | 25 | oveq1d 5937 |
. . . 4
|
| 37 | 35, 36, 25 | 3eqtr3d 2237 |
. . 3
|
| 38 | 37, 29 | r19.29a 2640 |
. 2
|
| 39 | 1, 2, 3, 12, 30, 38 | ismgmid2 13023 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 |
| This theorem is referenced by: mhmfmhm 13247 ghmgrp 13248 |
| Copyright terms: Public domain | W3C validator |