| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmgrp | Unicode version | ||
| Description: The image of a group |
| Ref | Expression |
|---|---|
| ghmgrp.f |
|
| ghmgrp.x |
|
| ghmgrp.y |
|
| ghmgrp.p |
|
| ghmgrp.q |
|
| ghmgrp.1 |
|
| ghmgrp.3 |
|
| Ref | Expression |
|---|---|
| ghmgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f |
. . 3
| |
| 2 | ghmgrp.x |
. . 3
| |
| 3 | ghmgrp.y |
. . 3
| |
| 4 | ghmgrp.p |
. . 3
| |
| 5 | ghmgrp.q |
. . 3
| |
| 6 | ghmgrp.1 |
. . 3
| |
| 7 | ghmgrp.3 |
. . . 4
| |
| 8 | 7 | grpmndd 13532 |
. . 3
|
| 9 | 1, 2, 3, 4, 5, 6, 8 | mhmmnd 13639 |
. 2
|
| 10 | fof 5544 |
. . . . . . . 8
| |
| 11 | 6, 10 | syl 14 |
. . . . . . 7
|
| 12 | 11 | ad3antrrr 492 |
. . . . . 6
|
| 13 | 7 | ad3antrrr 492 |
. . . . . . 7
|
| 14 | simplr 528 |
. . . . . . 7
| |
| 15 | eqid 2229 |
. . . . . . . 8
| |
| 16 | 2, 15 | grpinvcl 13567 |
. . . . . . 7
|
| 17 | 13, 14, 16 | syl2anc 411 |
. . . . . 6
|
| 18 | 12, 17 | ffvelcdmd 5764 |
. . . . 5
|
| 19 | 1 | 3adant1r 1255 |
. . . . . . . 8
|
| 20 | 7, 16 | sylan 283 |
. . . . . . . 8
|
| 21 | simpr 110 |
. . . . . . . 8
| |
| 22 | 19, 20, 21 | mhmlem 13637 |
. . . . . . 7
|
| 23 | 22 | ad4ant13 513 |
. . . . . 6
|
| 24 | eqid 2229 |
. . . . . . . . . 10
| |
| 25 | 2, 4, 24, 15 | grplinv 13569 |
. . . . . . . . 9
|
| 26 | 25 | fveq2d 5627 |
. . . . . . . 8
|
| 27 | 13, 14, 26 | syl2anc 411 |
. . . . . . 7
|
| 28 | 1, 2, 3, 4, 5, 6, 8, 24 | mhmid 13638 |
. . . . . . . 8
|
| 29 | 28 | ad3antrrr 492 |
. . . . . . 7
|
| 30 | 27, 29 | eqtrd 2262 |
. . . . . 6
|
| 31 | simpr 110 |
. . . . . . 7
| |
| 32 | 31 | oveq2d 6010 |
. . . . . 6
|
| 33 | 23, 30, 32 | 3eqtr3rd 2271 |
. . . . 5
|
| 34 | oveq1 6001 |
. . . . . . 7
| |
| 35 | 34 | eqeq1d 2238 |
. . . . . 6
|
| 36 | 35 | rspcev 2907 |
. . . . 5
|
| 37 | 18, 33, 36 | syl2anc 411 |
. . . 4
|
| 38 | foelcdmi 5679 |
. . . . 5
| |
| 39 | 6, 38 | sylan 283 |
. . . 4
|
| 40 | 37, 39 | r19.29a 2674 |
. . 3
|
| 41 | 40 | ralrimiva 2603 |
. 2
|
| 42 | eqid 2229 |
. . 3
| |
| 43 | 3, 5, 42 | isgrp 13525 |
. 2
|
| 44 | 9, 41, 43 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-inn 9099 df-2 9157 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 |
| This theorem is referenced by: ghmfghm 13849 ghmabl 13851 |
| Copyright terms: Public domain | W3C validator |