Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ghmgrp | Unicode version |
Description: The image of a group under a group homomorphism is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.) |
Ref | Expression |
---|---|
ghmgrp.f | |
ghmgrp.x | |
ghmgrp.y | |
ghmgrp.p | |
ghmgrp.q | |
ghmgrp.1 | |
ghmgrp.3 |
Ref | Expression |
---|---|
ghmgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp.f | . . 3 | |
2 | ghmgrp.x | . . 3 | |
3 | ghmgrp.y | . . 3 | |
4 | ghmgrp.p | . . 3 | |
5 | ghmgrp.q | . . 3 | |
6 | ghmgrp.1 | . . 3 | |
7 | ghmgrp.3 | . . . 4 | |
8 | 7 | grpmndd 12742 | . . 3 |
9 | 1, 2, 3, 4, 5, 6, 8 | mhmmnd 12831 | . 2 |
10 | fof 5422 | . . . . . . . 8 | |
11 | 6, 10 | syl 14 | . . . . . . 7 |
12 | 11 | ad3antrrr 490 | . . . . . 6 |
13 | 7 | ad3antrrr 490 | . . . . . . 7 |
14 | simplr 526 | . . . . . . 7 | |
15 | eqid 2171 | . . . . . . . 8 | |
16 | 2, 15 | grpinvcl 12773 | . . . . . . 7 |
17 | 13, 14, 16 | syl2anc 409 | . . . . . 6 |
18 | 12, 17 | ffvelrnd 5636 | . . . . 5 |
19 | 1 | 3adant1r 1227 | . . . . . . . 8 |
20 | 7, 16 | sylan 281 | . . . . . . . 8 |
21 | simpr 109 | . . . . . . . 8 | |
22 | 19, 20, 21 | mhmlem 12829 | . . . . . . 7 |
23 | 22 | ad4ant13 511 | . . . . . 6 |
24 | eqid 2171 | . . . . . . . . . 10 | |
25 | 2, 4, 24, 15 | grplinv 12774 | . . . . . . . . 9 |
26 | 25 | fveq2d 5503 | . . . . . . . 8 |
27 | 13, 14, 26 | syl2anc 409 | . . . . . . 7 |
28 | 1, 2, 3, 4, 5, 6, 8, 24 | mhmid 12830 | . . . . . . . 8 |
29 | 28 | ad3antrrr 490 | . . . . . . 7 |
30 | 27, 29 | eqtrd 2204 | . . . . . 6 |
31 | simpr 109 | . . . . . . 7 | |
32 | 31 | oveq2d 5873 | . . . . . 6 |
33 | 23, 30, 32 | 3eqtr3rd 2213 | . . . . 5 |
34 | oveq1 5864 | . . . . . . 7 | |
35 | 34 | eqeq1d 2180 | . . . . . 6 |
36 | 35 | rspcev 2835 | . . . . 5 |
37 | 18, 33, 36 | syl2anc 409 | . . . 4 |
38 | foelrni 5552 | . . . . 5 | |
39 | 6, 38 | sylan 281 | . . . 4 |
40 | 37, 39 | r19.29a 2614 | . . 3 |
41 | 40 | ralrimiva 2544 | . 2 |
42 | eqid 2171 | . . 3 | |
43 | 3, 5, 42 | isgrp 12736 | . 2 |
44 | 9, 41, 43 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 974 wceq 1349 wcel 2142 wral 2449 wrex 2450 wf 5196 wfo 5198 cfv 5200 (class class class)co 5857 cbs 12420 cplusg 12484 c0g 12618 cmnd 12674 cgrp 12730 cminusg 12731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-mgm 12632 df-sgrp 12665 df-mnd 12675 df-grp 12733 df-minusg 12734 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |