| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmgrp | Unicode version | ||
| Description: The image of a group |
| Ref | Expression |
|---|---|
| ghmgrp.f |
|
| ghmgrp.x |
|
| ghmgrp.y |
|
| ghmgrp.p |
|
| ghmgrp.q |
|
| ghmgrp.1 |
|
| ghmgrp.3 |
|
| Ref | Expression |
|---|---|
| ghmgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f |
. . 3
| |
| 2 | ghmgrp.x |
. . 3
| |
| 3 | ghmgrp.y |
. . 3
| |
| 4 | ghmgrp.p |
. . 3
| |
| 5 | ghmgrp.q |
. . 3
| |
| 6 | ghmgrp.1 |
. . 3
| |
| 7 | ghmgrp.3 |
. . . 4
| |
| 8 | 7 | grpmndd 13395 |
. . 3
|
| 9 | 1, 2, 3, 4, 5, 6, 8 | mhmmnd 13502 |
. 2
|
| 10 | fof 5507 |
. . . . . . . 8
| |
| 11 | 6, 10 | syl 14 |
. . . . . . 7
|
| 12 | 11 | ad3antrrr 492 |
. . . . . 6
|
| 13 | 7 | ad3antrrr 492 |
. . . . . . 7
|
| 14 | simplr 528 |
. . . . . . 7
| |
| 15 | eqid 2206 |
. . . . . . . 8
| |
| 16 | 2, 15 | grpinvcl 13430 |
. . . . . . 7
|
| 17 | 13, 14, 16 | syl2anc 411 |
. . . . . 6
|
| 18 | 12, 17 | ffvelcdmd 5726 |
. . . . 5
|
| 19 | 1 | 3adant1r 1234 |
. . . . . . . 8
|
| 20 | 7, 16 | sylan 283 |
. . . . . . . 8
|
| 21 | simpr 110 |
. . . . . . . 8
| |
| 22 | 19, 20, 21 | mhmlem 13500 |
. . . . . . 7
|
| 23 | 22 | ad4ant13 513 |
. . . . . 6
|
| 24 | eqid 2206 |
. . . . . . . . . 10
| |
| 25 | 2, 4, 24, 15 | grplinv 13432 |
. . . . . . . . 9
|
| 26 | 25 | fveq2d 5590 |
. . . . . . . 8
|
| 27 | 13, 14, 26 | syl2anc 411 |
. . . . . . 7
|
| 28 | 1, 2, 3, 4, 5, 6, 8, 24 | mhmid 13501 |
. . . . . . . 8
|
| 29 | 28 | ad3antrrr 492 |
. . . . . . 7
|
| 30 | 27, 29 | eqtrd 2239 |
. . . . . 6
|
| 31 | simpr 110 |
. . . . . . 7
| |
| 32 | 31 | oveq2d 5970 |
. . . . . 6
|
| 33 | 23, 30, 32 | 3eqtr3rd 2248 |
. . . . 5
|
| 34 | oveq1 5961 |
. . . . . . 7
| |
| 35 | 34 | eqeq1d 2215 |
. . . . . 6
|
| 36 | 35 | rspcev 2879 |
. . . . 5
|
| 37 | 18, 33, 36 | syl2anc 411 |
. . . 4
|
| 38 | foelcdmi 5641 |
. . . . 5
| |
| 39 | 6, 38 | sylan 283 |
. . . 4
|
| 40 | 37, 39 | r19.29a 2650 |
. . 3
|
| 41 | 40 | ralrimiva 2580 |
. 2
|
| 42 | eqid 2206 |
. . 3
| |
| 43 | 3, 5, 42 | isgrp 13388 |
. 2
|
| 44 | 9, 41, 43 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-inn 9050 df-2 9108 df-ndx 12885 df-slot 12886 df-base 12888 df-plusg 12972 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-minusg 13386 |
| This theorem is referenced by: ghmfghm 13712 ghmabl 13714 |
| Copyright terms: Public domain | W3C validator |