ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmgrp Unicode version

Theorem ghmgrp 13641
Description: The image of a group  G under a group homomorphism  F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator  O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
ghmgrp.x  |-  X  =  ( Base `  G
)
ghmgrp.y  |-  Y  =  ( Base `  H
)
ghmgrp.p  |-  .+  =  ( +g  `  G )
ghmgrp.q  |-  .+^  =  ( +g  `  H )
ghmgrp.1  |-  ( ph  ->  F : X -onto-> Y
)
ghmgrp.3  |-  ( ph  ->  G  e.  Grp )
Assertion
Ref Expression
ghmgrp  |-  ( ph  ->  H  e.  Grp )
Distinct variable groups:    x, F, y   
x, G, y    x,  .+ , y    x, H, y   
x, X, y    x, Y, y    x,  .+^ , y    ph, x, y

Proof of Theorem ghmgrp
Dummy variables  a  f  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp.f . . 3  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
2 ghmgrp.x . . 3  |-  X  =  ( Base `  G
)
3 ghmgrp.y . . 3  |-  Y  =  ( Base `  H
)
4 ghmgrp.p . . 3  |-  .+  =  ( +g  `  G )
5 ghmgrp.q . . 3  |-  .+^  =  ( +g  `  H )
6 ghmgrp.1 . . 3  |-  ( ph  ->  F : X -onto-> Y
)
7 ghmgrp.3 . . . 4  |-  ( ph  ->  G  e.  Grp )
87grpmndd 13532 . . 3  |-  ( ph  ->  G  e.  Mnd )
91, 2, 3, 4, 5, 6, 8mhmmnd 13639 . 2  |-  ( ph  ->  H  e.  Mnd )
10 fof 5544 . . . . . . . 8  |-  ( F : X -onto-> Y  ->  F : X --> Y )
116, 10syl 14 . . . . . . 7  |-  ( ph  ->  F : X --> Y )
1211ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  F : X
--> Y )
137ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  G  e.  Grp )
14 simplr 528 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  i  e.  X )
15 eqid 2229 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
162, 15grpinvcl 13567 . . . . . . 7  |-  ( ( G  e.  Grp  /\  i  e.  X )  ->  ( ( invg `  G ) `  i
)  e.  X )
1713, 14, 16syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( invg `  G ) `
 i )  e.  X )
1812, 17ffvelcdmd 5764 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( ( invg `  G ) `  i
) )  e.  Y
)
1913adant1r 1255 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  X )  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) ) )
207, 16sylan 283 . . . . . . . 8  |-  ( (
ph  /\  i  e.  X )  ->  (
( invg `  G ) `  i
)  e.  X )
21 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  i  e.  X )  ->  i  e.  X )
2219, 20, 21mhmlem 13637 . . . . . . 7  |-  ( (
ph  /\  i  e.  X )  ->  ( F `  ( (
( invg `  G ) `  i
)  .+  i )
)  =  ( ( F `  ( ( invg `  G
) `  i )
)  .+^  ( F `  i ) ) )
2322ad4ant13 513 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( ( ( invg `  G ) `
 i )  .+  i ) )  =  ( ( F `  ( ( invg `  G ) `  i
) )  .+^  ( F `
 i ) ) )
24 eqid 2229 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
252, 4, 24, 15grplinv 13569 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  i  e.  X )  ->  ( ( ( invg `  G ) `
 i )  .+  i )  =  ( 0g `  G ) )
2625fveq2d 5627 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  i  e.  X )  ->  ( F `  (
( ( invg `  G ) `  i
)  .+  i )
)  =  ( F `
 ( 0g `  G ) ) )
2713, 14, 26syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( ( ( invg `  G ) `
 i )  .+  i ) )  =  ( F `  ( 0g `  G ) ) )
281, 2, 3, 4, 5, 6, 8, 24mhmid 13638 . . . . . . . 8  |-  ( ph  ->  ( F `  ( 0g `  G ) )  =  ( 0g `  H ) )
2928ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( 0g `  G
) )  =  ( 0g `  H ) )
3027, 29eqtrd 2262 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  ( ( ( invg `  G ) `
 i )  .+  i ) )  =  ( 0g `  H
) )
31 simpr 110 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( F `  i )  =  a )
3231oveq2d 6010 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  ( ( invg `  G ) `
 i ) ) 
.+^  ( F `  i ) )  =  ( ( F `  ( ( invg `  G ) `  i
) )  .+^  a ) )
3323, 30, 323eqtr3rd 2271 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  ( ( F `  ( ( invg `  G ) `
 i ) ) 
.+^  a )  =  ( 0g `  H
) )
34 oveq1 6001 . . . . . . 7  |-  ( f  =  ( F `  ( ( invg `  G ) `  i
) )  ->  (
f  .+^  a )  =  ( ( F `  ( ( invg `  G ) `  i
) )  .+^  a ) )
3534eqeq1d 2238 . . . . . 6  |-  ( f  =  ( F `  ( ( invg `  G ) `  i
) )  ->  (
( f  .+^  a )  =  ( 0g `  H )  <->  ( ( F `  ( ( invg `  G ) `
 i ) ) 
.+^  a )  =  ( 0g `  H
) ) )
3635rspcev 2907 . . . . 5  |-  ( ( ( F `  (
( invg `  G ) `  i
) )  e.  Y  /\  ( ( F `  ( ( invg `  G ) `  i
) )  .+^  a )  =  ( 0g `  H ) )  ->  E. f  e.  Y  ( f  .+^  a )  =  ( 0g `  H ) )
3718, 33, 36syl2anc 411 . . . 4  |-  ( ( ( ( ph  /\  a  e.  Y )  /\  i  e.  X
)  /\  ( F `  i )  =  a )  ->  E. f  e.  Y  ( f  .+^  a )  =  ( 0g `  H ) )
38 foelcdmi 5679 . . . . 5  |-  ( ( F : X -onto-> Y  /\  a  e.  Y
)  ->  E. i  e.  X  ( F `  i )  =  a )
396, 38sylan 283 . . . 4  |-  ( (
ph  /\  a  e.  Y )  ->  E. i  e.  X  ( F `  i )  =  a )
4037, 39r19.29a 2674 . . 3  |-  ( (
ph  /\  a  e.  Y )  ->  E. f  e.  Y  ( f  .+^  a )  =  ( 0g `  H ) )
4140ralrimiva 2603 . 2  |-  ( ph  ->  A. a  e.  Y  E. f  e.  Y  ( f  .+^  a )  =  ( 0g `  H ) )
42 eqid 2229 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
433, 5, 42isgrp 13525 . 2  |-  ( H  e.  Grp  <->  ( H  e.  Mnd  /\  A. a  e.  Y  E. f  e.  Y  ( f  .+^  a )  =  ( 0g `  H ) ) )
449, 41, 43sylanbrc 417 1  |-  ( ph  ->  H  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   -->wf 5310   -onto->wfo 5312   ` cfv 5314  (class class class)co 5994   Basecbs 13018   +g cplusg 13096   0gc0g 13275   Mndcmnd 13435   Grpcgrp 13519   invgcminusg 13520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523
This theorem is referenced by:  ghmfghm  13849  ghmabl  13851
  Copyright terms: Public domain W3C validator