ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzwodc Unicode version

Theorem uzwodc 11966
Description: Well-ordering principle: any inhabited decidable subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005.) (Revised by Jim Kingdon, 22-Oct-2024.)
Assertion
Ref Expression
uzwodc  |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
Distinct variable groups:    j, M, k   
x, M, k    S, j, k    x, S

Proof of Theorem uzwodc
Dummy variables  s  p  t  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 520 . . . . 5  |-  ( ( ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_ 
t )  ->  s  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )
2 oveq1 5848 . . . . . . . 8  |-  ( p  =  s  ->  (
p  -  1 )  =  ( s  - 
1 ) )
32oveq1d 5856 . . . . . . 7  |-  ( p  =  s  ->  (
( p  -  1 )  +  M )  =  ( ( s  -  1 )  +  M ) )
43eleq1d 2234 . . . . . 6  |-  ( p  =  s  ->  (
( ( p  - 
1 )  +  M
)  e.  S  <->  ( (
s  -  1 )  +  M )  e.  S ) )
54elrab 2881 . . . . 5  |-  ( s  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S }  <->  ( s  e.  NN  /\  ( ( s  -  1 )  +  M )  e.  S ) )
61, 5sylib 121 . . . 4  |-  ( ( ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_ 
t )  ->  (
s  e.  NN  /\  ( ( s  - 
1 )  +  M
)  e.  S ) )
76simprd 113 . . 3  |-  ( ( ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_ 
t )  ->  (
( s  -  1 )  +  M )  e.  S )
8 breq2 3985 . . . . . . 7  |-  ( t  =  ( ( k  -  M )  +  1 )  ->  (
s  <_  t  <->  s  <_  ( ( k  -  M
)  +  1 ) ) )
9 simplr 520 . . . . . . 7  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)
10 oveq1 5848 . . . . . . . . . 10  |-  ( p  =  ( ( k  -  M )  +  1 )  ->  (
p  -  1 )  =  ( ( ( k  -  M )  +  1 )  - 
1 ) )
1110oveq1d 5856 . . . . . . . . 9  |-  ( p  =  ( ( k  -  M )  +  1 )  ->  (
( p  -  1 )  +  M )  =  ( ( ( ( k  -  M
)  +  1 )  -  1 )  +  M ) )
1211eleq1d 2234 . . . . . . . 8  |-  ( p  =  ( ( k  -  M )  +  1 )  ->  (
( ( p  - 
1 )  +  M
)  e.  S  <->  ( (
( ( k  -  M )  +  1 )  -  1 )  +  M )  e.  S ) )
13 simp1 987 . . . . . . . . . . . . . 14  |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  ->  S  C_  ( ZZ>= `  M )
)
1413ad3antrrr 484 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  S  C_  ( ZZ>= `  M )
)
15 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  k  e.  S )
1614, 15sseldd 3142 . . . . . . . . . . . 12  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  k  e.  ( ZZ>= `  M )
)
17 eluzelz 9471 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1816, 17syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  k  e.  ZZ )
19 simp2 988 . . . . . . . . . . . . 13  |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  ->  E. x  x  e.  S )
20 ssel2 3136 . . . . . . . . . . . . . . . 16  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  x  e.  ( ZZ>= `  M )
)
21 eluzel2 9467 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2220, 21syl 14 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  M  e.  ZZ )
2322ex 114 . . . . . . . . . . . . . 14  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( x  e.  S  ->  M  e.  ZZ ) )
2423exlimdv 1807 . . . . . . . . . . . . 13  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( E. x  x  e.  S  ->  M  e.  ZZ ) )
2513, 19, 24sylc 62 . . . . . . . . . . . 12  |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  ->  M  e.  ZZ )
2625ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  M  e.  ZZ )
2718, 26zsubcld 9314 . . . . . . . . . 10  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
k  -  M )  e.  ZZ )
28 eluzle 9474 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  <_  k )
2916, 28syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  M  <_  k )
3018zred 9309 . . . . . . . . . . . 12  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  k  e.  RR )
3126zred 9309 . . . . . . . . . . . 12  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  M  e.  RR )
3230, 31subge0d 8429 . . . . . . . . . . 11  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
0  <_  ( k  -  M )  <->  M  <_  k ) )
3329, 32mpbird 166 . . . . . . . . . 10  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  0  <_  ( k  -  M
) )
34 elnn0z 9200 . . . . . . . . . 10  |-  ( ( k  -  M )  e.  NN0  <->  ( ( k  -  M )  e.  ZZ  /\  0  <_ 
( k  -  M
) ) )
3527, 33, 34sylanbrc 414 . . . . . . . . 9  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
k  -  M )  e.  NN0 )
36 nn0p1nn 9149 . . . . . . . . 9  |-  ( ( k  -  M )  e.  NN0  ->  ( ( k  -  M )  +  1 )  e.  NN )
3735, 36syl 14 . . . . . . . 8  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
( k  -  M
)  +  1 )  e.  NN )
3827zcnd 9310 . . . . . . . . . . . 12  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
k  -  M )  e.  CC )
39 1cnd 7911 . . . . . . . . . . . 12  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  1  e.  CC )
4038, 39pncand 8206 . . . . . . . . . . 11  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
( ( k  -  M )  +  1 )  -  1 )  =  ( k  -  M ) )
4140oveq1d 5856 . . . . . . . . . 10  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
( ( ( k  -  M )  +  1 )  -  1 )  +  M )  =  ( ( k  -  M )  +  M ) )
4218zcnd 9310 . . . . . . . . . . 11  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  k  e.  CC )
4326zcnd 9310 . . . . . . . . . . 11  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  M  e.  CC )
4442, 43npcand 8209 . . . . . . . . . 10  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
( k  -  M
)  +  M )  =  k )
4541, 44eqtrd 2198 . . . . . . . . 9  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
( ( ( k  -  M )  +  1 )  -  1 )  +  M )  =  k )
4645, 15eqeltrd 2242 . . . . . . . 8  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
( ( ( k  -  M )  +  1 )  -  1 )  +  M )  e.  S )
4712, 37, 46elrabd 2883 . . . . . . 7  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
( k  -  M
)  +  1 )  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )
488, 9, 47rspcdva 2834 . . . . . 6  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  s  <_  ( ( k  -  M )  +  1 ) )
49 elrabi 2878 . . . . . . . . 9  |-  ( s  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S }  ->  s  e.  NN )
5049ad3antlr 485 . . . . . . . 8  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  s  e.  NN )
5150nnred 8866 . . . . . . 7  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  s  e.  RR )
52 1red 7910 . . . . . . 7  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  1  e.  RR )
5330, 31resubcld 8275 . . . . . . 7  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
k  -  M )  e.  RR )
5451, 52, 53lesubaddd 8436 . . . . . 6  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
( s  -  1 )  <_  ( k  -  M )  <->  s  <_  ( ( k  -  M
)  +  1 ) ) )
5548, 54mpbird 166 . . . . 5  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
s  -  1 )  <_  ( k  -  M ) )
5651, 52resubcld 8275 . . . . . 6  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
s  -  1 )  e.  RR )
57 leaddsub 8332 . . . . . 6  |-  ( ( ( s  -  1 )  e.  RR  /\  M  e.  RR  /\  k  e.  RR )  ->  (
( ( s  - 
1 )  +  M
)  <_  k  <->  ( s  -  1 )  <_ 
( k  -  M
) ) )
5856, 31, 30, 57syl3anc 1228 . . . . 5  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
( ( s  - 
1 )  +  M
)  <_  k  <->  ( s  -  1 )  <_ 
( k  -  M
) ) )
5955, 58mpbird 166 . . . 4  |-  ( ( ( ( ( S 
C_  ( ZZ>= `  M
)  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
)  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)  /\  k  e.  S )  ->  (
( s  -  1 )  +  M )  <_  k )
6059ralrimiva 2538 . . 3  |-  ( ( ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_ 
t )  ->  A. k  e.  S  ( (
s  -  1 )  +  M )  <_ 
k )
61 breq1 3984 . . . . 5  |-  ( j  =  ( ( s  -  1 )  +  M )  ->  (
j  <_  k  <->  ( (
s  -  1 )  +  M )  <_ 
k ) )
6261ralbidv 2465 . . . 4  |-  ( j  =  ( ( s  -  1 )  +  M )  ->  ( A. k  e.  S  j  <_  k  <->  A. k  e.  S  ( (
s  -  1 )  +  M )  <_ 
k ) )
6362rspcev 2829 . . 3  |-  ( ( ( ( s  - 
1 )  +  M
)  e.  S  /\  A. k  e.  S  ( ( s  -  1 )  +  M )  <_  k )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
647, 60, 63syl2anc 409 . 2  |-  ( ( ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )  /\  s  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )  /\  A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_ 
t )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
65 ssrab2 3226 . . 3  |-  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S }  C_  NN
66 eluzelz 9471 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
6720, 66syl 14 . . . . . . . . . 10  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  x  e.  ZZ )
6867, 22zsubcld 9314 . . . . . . . . 9  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
x  -  M )  e.  ZZ )
69 1zzd 9214 . . . . . . . . 9  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  1  e.  ZZ )
7068, 69zaddcld 9313 . . . . . . . 8  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
( x  -  M
)  +  1 )  e.  ZZ )
71 oveq1 5848 . . . . . . . . . . 11  |-  ( p  =  ( ( x  -  M )  +  1 )  ->  (
p  -  1 )  =  ( ( ( x  -  M )  +  1 )  - 
1 ) )
7271oveq1d 5856 . . . . . . . . . 10  |-  ( p  =  ( ( x  -  M )  +  1 )  ->  (
( p  -  1 )  +  M )  =  ( ( ( ( x  -  M
)  +  1 )  -  1 )  +  M ) )
7372eleq1d 2234 . . . . . . . . 9  |-  ( p  =  ( ( x  -  M )  +  1 )  ->  (
( ( p  - 
1 )  +  M
)  e.  S  <->  ( (
( ( x  -  M )  +  1 )  -  1 )  +  M )  e.  S ) )
74 eluzle 9474 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
7520, 74syl 14 . . . . . . . . . . . 12  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  M  <_  x )
7667zred 9309 . . . . . . . . . . . . 13  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  x  e.  RR )
7722zred 9309 . . . . . . . . . . . . 13  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  M  e.  RR )
7876, 77subge0d 8429 . . . . . . . . . . . 12  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
0  <_  ( x  -  M )  <->  M  <_  x ) )
7975, 78mpbird 166 . . . . . . . . . . 11  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  0  <_  ( x  -  M
) )
80 elnn0z 9200 . . . . . . . . . . 11  |-  ( ( x  -  M )  e.  NN0  <->  ( ( x  -  M )  e.  ZZ  /\  0  <_ 
( x  -  M
) ) )
8168, 79, 80sylanbrc 414 . . . . . . . . . 10  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
x  -  M )  e.  NN0 )
82 nn0p1nn 9149 . . . . . . . . . 10  |-  ( ( x  -  M )  e.  NN0  ->  ( ( x  -  M )  +  1 )  e.  NN )
8381, 82syl 14 . . . . . . . . 9  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
( x  -  M
)  +  1 )  e.  NN )
8468zcnd 9310 . . . . . . . . . . . . 13  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
x  -  M )  e.  CC )
85 1cnd 7911 . . . . . . . . . . . . 13  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  1  e.  CC )
8684, 85pncand 8206 . . . . . . . . . . . 12  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
( ( x  -  M )  +  1 )  -  1 )  =  ( x  -  M ) )
8786oveq1d 5856 . . . . . . . . . . 11  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
( ( ( x  -  M )  +  1 )  -  1 )  +  M )  =  ( ( x  -  M )  +  M ) )
8867zcnd 9310 . . . . . . . . . . . 12  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  x  e.  CC )
8922zcnd 9310 . . . . . . . . . . . 12  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  M  e.  CC )
9088, 89npcand 8209 . . . . . . . . . . 11  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
( x  -  M
)  +  M )  =  x )
9187, 90eqtrd 2198 . . . . . . . . . 10  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
( ( ( x  -  M )  +  1 )  -  1 )  +  M )  =  x )
92 simpr 109 . . . . . . . . . 10  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  x  e.  S )
9391, 92eqeltrd 2242 . . . . . . . . 9  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
( ( ( x  -  M )  +  1 )  -  1 )  +  M )  e.  S )
9473, 83, 93elrabd 2883 . . . . . . . 8  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  (
( x  -  M
)  +  1 )  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )
95 eleq1 2228 . . . . . . . . 9  |-  ( q  =  ( ( x  -  M )  +  1 )  ->  (
q  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S }  <->  ( (
x  -  M )  +  1 )  e. 
{ p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } ) )
9695spcegv 2813 . . . . . . . 8  |-  ( ( ( x  -  M
)  +  1 )  e.  ZZ  ->  (
( ( x  -  M )  +  1 )  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S }  ->  E. q 
q  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } ) )
9770, 94, 96sylc 62 . . . . . . 7  |-  ( ( S  C_  ( ZZ>= `  M )  /\  x  e.  S )  ->  E. q 
q  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )
9897ex 114 . . . . . 6  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( x  e.  S  ->  E. q 
q  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } ) )
9998exlimdv 1807 . . . . 5  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( E. x  x  e.  S  ->  E. q  q  e. 
{ p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } ) )
10099imp 123 . . . 4  |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S
)  ->  E. q 
q  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )
1011003adant3 1007 . . 3  |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  ->  E. q 
q  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )
102 eleq1 2228 . . . . . . 7  |-  ( x  =  ( ( r  -  1 )  +  M )  ->  (
x  e.  S  <->  ( (
r  -  1 )  +  M )  e.  S ) )
103102dcbid 828 . . . . . 6  |-  ( x  =  ( ( r  -  1 )  +  M )  ->  (DECID  x  e.  S  <-> DECID  ( ( r  - 
1 )  +  M
)  e.  S ) )
104 simpl3 992 . . . . . 6  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  A. x  e.  ( ZZ>= `  M )DECID  x  e.  S )
10524imp 123 . . . . . . . . 9  |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S
)  ->  M  e.  ZZ )
1061053adant3 1007 . . . . . . . 8  |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  ->  M  e.  ZZ )
107106adantr 274 . . . . . . 7  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  M  e.  ZZ )
108 simpr 109 . . . . . . . . . 10  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  r  e.  NN )
109108nnzd 9308 . . . . . . . . 9  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  r  e.  ZZ )
110 1zzd 9214 . . . . . . . . 9  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  1  e.  ZZ )
111109, 110zsubcld 9314 . . . . . . . 8  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  (
r  -  1 )  e.  ZZ )
112111, 107zaddcld 9313 . . . . . . 7  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  (
( r  -  1 )  +  M )  e.  ZZ )
113 nnm1ge0 9273 . . . . . . . . 9  |-  ( r  e.  NN  ->  0  <_  ( r  -  1 ) )
114113adantl 275 . . . . . . . 8  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  0  <_  ( r  -  1 ) )
115107zred 9309 . . . . . . . . 9  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  M  e.  RR )
116111zred 9309 . . . . . . . . 9  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  (
r  -  1 )  e.  RR )
117115, 116addge02d 8428 . . . . . . . 8  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  (
0  <_  ( r  -  1 )  <->  M  <_  ( ( r  -  1 )  +  M ) ) )
118114, 117mpbid 146 . . . . . . 7  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  M  <_  ( ( r  - 
1 )  +  M
) )
119 eluz2 9468 . . . . . . 7  |-  ( ( ( r  -  1 )  +  M )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  ( ( r  -  1 )  +  M )  e.  ZZ  /\  M  <_ 
( ( r  - 
1 )  +  M
) ) )
120107, 112, 118, 119syl3anbrc 1171 . . . . . 6  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  (
( r  -  1 )  +  M )  e.  ( ZZ>= `  M
) )
121103, 104, 120rspcdva 2834 . . . . 5  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  -> DECID  ( ( r  - 
1 )  +  M
)  e.  S )
122 oveq1 5848 . . . . . . . . . 10  |-  ( p  =  r  ->  (
p  -  1 )  =  ( r  - 
1 ) )
123122oveq1d 5856 . . . . . . . . 9  |-  ( p  =  r  ->  (
( p  -  1 )  +  M )  =  ( ( r  -  1 )  +  M ) )
124123eleq1d 2234 . . . . . . . 8  |-  ( p  =  r  ->  (
( ( p  - 
1 )  +  M
)  e.  S  <->  ( (
r  -  1 )  +  M )  e.  S ) )
125124elrab3 2882 . . . . . . 7  |-  ( r  e.  NN  ->  (
r  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S }  <->  ( (
r  -  1 )  +  M )  e.  S ) )
126125dcbid 828 . . . . . 6  |-  ( r  e.  NN  ->  (DECID  r  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } 
<-> DECID  ( ( r  -  1 )  +  M )  e.  S ) )
127126adantl 275 . . . . 5  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  ->  (DECID  r  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } 
<-> DECID  ( ( r  -  1 )  +  M )  e.  S ) )
128121, 127mpbird 166 . . . 4  |-  ( ( ( S  C_  ( ZZ>=
`  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  /\  r  e.  NN )  -> DECID  r  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )
129128ralrimiva 2538 . . 3  |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  ->  A. r  e.  NN DECID  r  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )
130 nnwodc 11965 . . 3  |-  ( ( { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S }  C_  NN  /\  E. q  q  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S }  /\  A. r  e.  NN DECID  r  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } )  ->  E. s  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } A. t  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } s  <_  t
)
13165, 101, 129, 130mp3an2i 1332 . 2  |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  ->  E. s  e.  { p  e.  NN  |  ( ( p  -  1 )  +  M )  e.  S } A. t  e.  {
p  e.  NN  | 
( ( p  - 
1 )  +  M
)  e.  S }
s  <_  t )
13264, 131r19.29a 2608 1  |-  ( ( S  C_  ( ZZ>= `  M )  /\  E. x  x  e.  S  /\  A. x  e.  (
ZZ>= `  M )DECID  x  e.  S )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2443   E.wrex 2444   {crab 2447    C_ wss 3115   class class class wbr 3981   ` cfv 5187  (class class class)co 5841   RRcr 7748   0cc0 7749   1c1 7750    + caddc 7752    <_ cle 7930    - cmin 8065   NNcn 8853   NN0cn0 9110   ZZcz 9187   ZZ>=cuz 9462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-fz 9941  df-fzo 10074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator