ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsr02 Unicode version

Theorem dvdsr02 13353
Description: Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
dvdsr0.b  |-  B  =  ( Base `  R
)
dvdsr0.d  |-  .||  =  (
||r `  R )
dvdsr0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
dvdsr02  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  .||  X  <->  X  =  .0.  ) )

Proof of Theorem dvdsr02
Dummy variables  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr0.b . . . 4  |-  B  =  ( Base `  R
)
21a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  B  =  ( Base `  R
) )
3 dvdsr0.d . . . 4  |-  .||  =  (
||r `  R )
43a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .||  =  (
||r `  R ) )
5 ringsrg 13297 . . . 4  |-  ( R  e.  Ring  ->  R  e. SRing
)
65adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e. SRing )
7 eqid 2187 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
87a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( .r `  R )  =  ( .r `  R
) )
9 dvdsr0.z . . . . 5  |-  .0.  =  ( 0g `  R )
101, 9ring0cl 13273 . . . 4  |-  ( R  e.  Ring  ->  .0.  e.  B )
1110adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .0.  e.  B )
122, 4, 6, 8, 11dvdsr2d 13343 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  .||  X  <->  E. x  e.  B  ( x
( .r `  R
)  .0.  )  =  X ) )
131, 7, 9ringrz 13296 . . . . . . 7  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  (
x ( .r `  R )  .0.  )  =  .0.  )
1413eqeq1d 2196 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  (
( x ( .r
`  R )  .0.  )  =  X  <->  .0.  =  X ) )
15 eqcom 2189 . . . . . 6  |-  (  .0.  =  X  <->  X  =  .0.  )
1614, 15bitrdi 196 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  (
( x ( .r
`  R )  .0.  )  =  X  <->  X  =  .0.  ) )
1716rexbidva 2484 . . . 4  |-  ( R  e.  Ring  ->  ( E. x  e.  B  ( x ( .r `  R )  .0.  )  =  X  <->  E. x  e.  B  X  =  .0.  )
)
18 elex2 2765 . . . . 5  |-  (  .0. 
e.  B  ->  E. w  w  e.  B )
19 r19.9rmv 3526 . . . . 5  |-  ( E. w  w  e.  B  ->  ( X  =  .0.  <->  E. x  e.  B  X  =  .0.  ) )
2010, 18, 193syl 17 . . . 4  |-  ( R  e.  Ring  ->  ( X  =  .0.  <->  E. x  e.  B  X  =  .0.  ) )
2117, 20bitr4d 191 . . 3  |-  ( R  e.  Ring  ->  ( E. x  e.  B  ( x ( .r `  R )  .0.  )  =  X  <->  X  =  .0.  ) )
2221adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( E. x  e.  B  ( x ( .r
`  R )  .0.  )  =  X  <->  X  =  .0.  ) )
2312, 22bitrd 188 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  .||  X  <->  X  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363   E.wex 1502    e. wcel 2158   E.wrex 2466   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   Basecbs 12476   .rcmulr 12552   0gc0g 12723  SRingcsrg 13215   Ringcrg 13248   ||rcdsr 13334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-3 8993  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-plusg 12564  df-mulr 12565  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12902  df-minusg 12903  df-cmn 13123  df-abl 13124  df-mgp 13173  df-ur 13212  df-srg 13216  df-ring 13250  df-dvdsr 13337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator