| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnwosdc | Unicode version | ||
| Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 25-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| nnwos.1 | 
 | 
| Ref | Expression | 
|---|---|
| nnwosdc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rabn0m 3478 | 
. . . . 5
 | |
| 2 | ssrab2 3268 | 
. . . . . 6
 | |
| 3 | 2 | biantrur 303 | 
. . . . 5
 | 
| 4 | 1, 3 | sylbb1 137 | 
. . . 4
 | 
| 5 | animorrl 827 | 
. . . . . . . 8
 | |
| 6 | df-dc 836 | 
. . . . . . . 8
 | |
| 7 | 5, 6 | sylibr 134 | 
. . . . . . 7
 | 
| 8 | nfs1v 1958 | 
. . . . . . . . . 10
 | |
| 9 | 8 | nfdc 1673 | 
. . . . . . . . 9
 | 
| 10 | sbequ12 1785 | 
. . . . . . . . . 10
 | |
| 11 | 10 | dcbid 839 | 
. . . . . . . . 9
 | 
| 12 | 9, 11 | rspc 2862 | 
. . . . . . . 8
 | 
| 13 | 12 | impcom 125 | 
. . . . . . 7
 | 
| 14 | 7, 13 | dcand 934 | 
. . . . . 6
 | 
| 15 | nfcv 2339 | 
. . . . . . . 8
 | |
| 16 | nfcv 2339 | 
. . . . . . . 8
 | |
| 17 | 15, 16, 8, 10 | elrabf 2918 | 
. . . . . . 7
 | 
| 18 | 17 | dcbii 841 | 
. . . . . 6
 | 
| 19 | 14, 18 | sylibr 134 | 
. . . . 5
 | 
| 20 | 19 | ralrimiva 2570 | 
. . . 4
 | 
| 21 | 4, 20 | anim12i 338 | 
. . 3
 | 
| 22 | df-3an 982 | 
. . 3
 | |
| 23 | 21, 22 | sylibr 134 | 
. 2
 | 
| 24 | nfrab1 2677 | 
. . . 4
 | |
| 25 | nfcv 2339 | 
. . . 4
 | |
| 26 | 24, 25 | nnwofdc 12205 | 
. . 3
 | 
| 27 | df-rex 2481 | 
. . . 4
 | |
| 28 | rabid 2673 | 
. . . . . 6
 | |
| 29 | df-ral 2480 | 
. . . . . . 7
 | |
| 30 | nnwos.1 | 
. . . . . . . . . . . 12
 | |
| 31 | 30, 30, 30 | 3bitr2d 216 | 
. . . . . . . . . . 11
 | 
| 32 | 31 | elrab 2920 | 
. . . . . . . . . 10
 | 
| 33 | 32 | imbi1i 238 | 
. . . . . . . . 9
 | 
| 34 | impexp 263 | 
. . . . . . . . 9
 | |
| 35 | 33, 34 | bitri 184 | 
. . . . . . . 8
 | 
| 36 | 35 | albii 1484 | 
. . . . . . 7
 | 
| 37 | 29, 36 | bitri 184 | 
. . . . . 6
 | 
| 38 | 28, 37 | anbi12i 460 | 
. . . . 5
 | 
| 39 | 38 | exbii 1619 | 
. . . 4
 | 
| 40 | df-ral 2480 | 
. . . . . . . 8
 | |
| 41 | 40 | anbi2i 457 | 
. . . . . . 7
 | 
| 42 | anass 401 | 
. . . . . . 7
 | |
| 43 | 41, 42 | bitr3i 186 | 
. . . . . 6
 | 
| 44 | 43 | exbii 1619 | 
. . . . 5
 | 
| 45 | df-rex 2481 | 
. . . . 5
 | |
| 46 | 44, 45 | bitr4i 187 | 
. . . 4
 | 
| 47 | 27, 39, 46 | 3bitri 206 | 
. . 3
 | 
| 48 | 26, 47 | sylib 122 | 
. 2
 | 
| 49 | 23, 48 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 | 
| This theorem is referenced by: infpnlem2 12529 | 
| Copyright terms: Public domain | W3C validator |