| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnwosdc | Unicode version | ||
| Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 25-Oct-2024.) |
| Ref | Expression |
|---|---|
| nnwos.1 |
|
| Ref | Expression |
|---|---|
| nnwosdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0m 3479 |
. . . . 5
| |
| 2 | ssrab2 3269 |
. . . . . 6
| |
| 3 | 2 | biantrur 303 |
. . . . 5
|
| 4 | 1, 3 | sylbb1 137 |
. . . 4
|
| 5 | animorrl 827 |
. . . . . . . 8
| |
| 6 | df-dc 836 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylibr 134 |
. . . . . . 7
|
| 8 | nfs1v 1958 |
. . . . . . . . . 10
| |
| 9 | 8 | nfdc 1673 |
. . . . . . . . 9
|
| 10 | sbequ12 1785 |
. . . . . . . . . 10
| |
| 11 | 10 | dcbid 839 |
. . . . . . . . 9
|
| 12 | 9, 11 | rspc 2862 |
. . . . . . . 8
|
| 13 | 12 | impcom 125 |
. . . . . . 7
|
| 14 | 7, 13 | dcand 934 |
. . . . . 6
|
| 15 | nfcv 2339 |
. . . . . . . 8
| |
| 16 | nfcv 2339 |
. . . . . . . 8
| |
| 17 | 15, 16, 8, 10 | elrabf 2918 |
. . . . . . 7
|
| 18 | 17 | dcbii 841 |
. . . . . 6
|
| 19 | 14, 18 | sylibr 134 |
. . . . 5
|
| 20 | 19 | ralrimiva 2570 |
. . . 4
|
| 21 | 4, 20 | anim12i 338 |
. . 3
|
| 22 | df-3an 982 |
. . 3
| |
| 23 | 21, 22 | sylibr 134 |
. 2
|
| 24 | nfrab1 2677 |
. . . 4
| |
| 25 | nfcv 2339 |
. . . 4
| |
| 26 | 24, 25 | nnwofdc 12230 |
. . 3
|
| 27 | df-rex 2481 |
. . . 4
| |
| 28 | rabid 2673 |
. . . . . 6
| |
| 29 | df-ral 2480 |
. . . . . . 7
| |
| 30 | nnwos.1 |
. . . . . . . . . . . 12
| |
| 31 | 30, 30, 30 | 3bitr2d 216 |
. . . . . . . . . . 11
|
| 32 | 31 | elrab 2920 |
. . . . . . . . . 10
|
| 33 | 32 | imbi1i 238 |
. . . . . . . . 9
|
| 34 | impexp 263 |
. . . . . . . . 9
| |
| 35 | 33, 34 | bitri 184 |
. . . . . . . 8
|
| 36 | 35 | albii 1484 |
. . . . . . 7
|
| 37 | 29, 36 | bitri 184 |
. . . . . 6
|
| 38 | 28, 37 | anbi12i 460 |
. . . . 5
|
| 39 | 38 | exbii 1619 |
. . . 4
|
| 40 | df-ral 2480 |
. . . . . . . 8
| |
| 41 | 40 | anbi2i 457 |
. . . . . . 7
|
| 42 | anass 401 |
. . . . . . 7
| |
| 43 | 41, 42 | bitr3i 186 |
. . . . . 6
|
| 44 | 43 | exbii 1619 |
. . . . 5
|
| 45 | df-rex 2481 |
. . . . 5
| |
| 46 | 44, 45 | bitr4i 187 |
. . . 4
|
| 47 | 27, 39, 46 | 3bitri 206 |
. . 3
|
| 48 | 26, 47 | sylib 122 |
. 2
|
| 49 | 23, 48 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-fzo 10235 |
| This theorem is referenced by: infpnlem2 12554 |
| Copyright terms: Public domain | W3C validator |