Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnwosdc | Unicode version |
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 25-Oct-2024.) |
Ref | Expression |
---|---|
nnwos.1 |
Ref | Expression |
---|---|
nnwosdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabn0m 3441 | . . . . 5 | |
2 | ssrab2 3232 | . . . . . 6 | |
3 | 2 | biantrur 301 | . . . . 5 |
4 | 1, 3 | sylbb1 136 | . . . 4 |
5 | animorrl 821 | . . . . . . . 8 DECID | |
6 | df-dc 830 | . . . . . . . 8 DECID | |
7 | 5, 6 | sylibr 133 | . . . . . . 7 DECID DECID |
8 | nfs1v 1932 | . . . . . . . . . 10 | |
9 | 8 | nfdc 1652 | . . . . . . . . 9 DECID |
10 | sbequ12 1764 | . . . . . . . . . 10 | |
11 | 10 | dcbid 833 | . . . . . . . . 9 DECID DECID |
12 | 9, 11 | rspc 2828 | . . . . . . . 8 DECID DECID |
13 | 12 | impcom 124 | . . . . . . 7 DECID DECID |
14 | dcan2 929 | . . . . . . 7 DECID DECID DECID | |
15 | 7, 13, 14 | sylc 62 | . . . . . 6 DECID DECID |
16 | nfcv 2312 | . . . . . . . 8 | |
17 | nfcv 2312 | . . . . . . . 8 | |
18 | 16, 17, 8, 10 | elrabf 2884 | . . . . . . 7 |
19 | 18 | dcbii 835 | . . . . . 6 DECID DECID |
20 | 15, 19 | sylibr 133 | . . . . 5 DECID DECID |
21 | 20 | ralrimiva 2543 | . . . 4 DECID DECID |
22 | 4, 21 | anim12i 336 | . . 3 DECID DECID |
23 | df-3an 975 | . . 3 DECID DECID | |
24 | 22, 23 | sylibr 133 | . 2 DECID DECID |
25 | nfrab1 2649 | . . . 4 | |
26 | nfcv 2312 | . . . 4 | |
27 | 25, 26 | nnwofdc 11986 | . . 3 DECID |
28 | df-rex 2454 | . . . 4 | |
29 | rabid 2645 | . . . . . 6 | |
30 | df-ral 2453 | . . . . . . 7 | |
31 | nnwos.1 | . . . . . . . . . . 11 | |
32 | 31 | elrab 2886 | . . . . . . . . . 10 |
33 | 32 | imbi1i 237 | . . . . . . . . 9 |
34 | impexp 261 | . . . . . . . . 9 | |
35 | 33, 34 | bitri 183 | . . . . . . . 8 |
36 | 35 | albii 1463 | . . . . . . 7 |
37 | 30, 36 | bitri 183 | . . . . . 6 |
38 | 29, 37 | anbi12i 457 | . . . . 5 |
39 | 38 | exbii 1598 | . . . 4 |
40 | df-ral 2453 | . . . . . . . 8 | |
41 | 40 | anbi2i 454 | . . . . . . 7 |
42 | anass 399 | . . . . . . 7 | |
43 | 41, 42 | bitr3i 185 | . . . . . 6 |
44 | 43 | exbii 1598 | . . . . 5 |
45 | df-rex 2454 | . . . . 5 | |
46 | 44, 45 | bitr4i 186 | . . . 4 |
47 | 28, 39, 46 | 3bitri 205 | . . 3 |
48 | 27, 47 | sylib 121 | . 2 DECID |
49 | 24, 48 | syl 14 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3a 973 wal 1346 wex 1485 wsb 1755 wcel 2141 wral 2448 wrex 2449 crab 2452 wss 3121 class class class wbr 3987 cle 7948 cn 8871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-addass 7869 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-sup 6959 df-inf 6960 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-inn 8872 df-n0 9129 df-z 9206 df-uz 9481 df-fz 9959 df-fzo 10092 |
This theorem is referenced by: infpnlem2 12305 |
Copyright terms: Public domain | W3C validator |