| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnwosdc | Unicode version | ||
| Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 25-Oct-2024.) |
| Ref | Expression |
|---|---|
| nnwos.1 |
|
| Ref | Expression |
|---|---|
| nnwosdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0m 3496 |
. . . . 5
| |
| 2 | ssrab2 3286 |
. . . . . 6
| |
| 3 | 2 | biantrur 303 |
. . . . 5
|
| 4 | 1, 3 | sylbb1 137 |
. . . 4
|
| 5 | animorrl 828 |
. . . . . . . 8
| |
| 6 | df-dc 837 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylibr 134 |
. . . . . . 7
|
| 8 | nfs1v 1968 |
. . . . . . . . . 10
| |
| 9 | 8 | nfdc 1683 |
. . . . . . . . 9
|
| 10 | sbequ12 1795 |
. . . . . . . . . 10
| |
| 11 | 10 | dcbid 840 |
. . . . . . . . 9
|
| 12 | 9, 11 | rspc 2878 |
. . . . . . . 8
|
| 13 | 12 | impcom 125 |
. . . . . . 7
|
| 14 | 7, 13 | dcand 935 |
. . . . . 6
|
| 15 | nfcv 2350 |
. . . . . . . 8
| |
| 16 | nfcv 2350 |
. . . . . . . 8
| |
| 17 | 15, 16, 8, 10 | elrabf 2934 |
. . . . . . 7
|
| 18 | 17 | dcbii 842 |
. . . . . 6
|
| 19 | 14, 18 | sylibr 134 |
. . . . 5
|
| 20 | 19 | ralrimiva 2581 |
. . . 4
|
| 21 | 4, 20 | anim12i 338 |
. . 3
|
| 22 | df-3an 983 |
. . 3
| |
| 23 | 21, 22 | sylibr 134 |
. 2
|
| 24 | nfrab1 2688 |
. . . 4
| |
| 25 | nfcv 2350 |
. . . 4
| |
| 26 | 24, 25 | nnwofdc 12474 |
. . 3
|
| 27 | df-rex 2492 |
. . . 4
| |
| 28 | rabid 2684 |
. . . . . 6
| |
| 29 | df-ral 2491 |
. . . . . . 7
| |
| 30 | nnwos.1 |
. . . . . . . . . . . 12
| |
| 31 | 30, 30, 30 | 3bitr2d 216 |
. . . . . . . . . . 11
|
| 32 | 31 | elrab 2936 |
. . . . . . . . . 10
|
| 33 | 32 | imbi1i 238 |
. . . . . . . . 9
|
| 34 | impexp 263 |
. . . . . . . . 9
| |
| 35 | 33, 34 | bitri 184 |
. . . . . . . 8
|
| 36 | 35 | albii 1494 |
. . . . . . 7
|
| 37 | 29, 36 | bitri 184 |
. . . . . 6
|
| 38 | 28, 37 | anbi12i 460 |
. . . . 5
|
| 39 | 38 | exbii 1629 |
. . . 4
|
| 40 | df-ral 2491 |
. . . . . . . 8
| |
| 41 | 40 | anbi2i 457 |
. . . . . . 7
|
| 42 | anass 401 |
. . . . . . 7
| |
| 43 | 41, 42 | bitr3i 186 |
. . . . . 6
|
| 44 | 43 | exbii 1629 |
. . . . 5
|
| 45 | df-rex 2492 |
. . . . 5
| |
| 46 | 44, 45 | bitr4i 187 |
. . . 4
|
| 47 | 27, 39, 46 | 3bitri 206 |
. . 3
|
| 48 | 26, 47 | sylib 122 |
. 2
|
| 49 | 23, 48 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 |
| This theorem is referenced by: infpnlem2 12798 |
| Copyright terms: Public domain | W3C validator |