ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralsns Unicode version

Theorem ralsns 3676
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
ralsns  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  [. A  /  x ]. ph ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem ralsns
StepHypRef Expression
1 df-ral 2490 . . 3  |-  ( A. x  e.  { A } ph  <->  A. x ( x  e.  { A }  ->  ph ) )
2 velsn 3655 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
32imbi1i 238 . . . 4  |-  ( ( x  e.  { A }  ->  ph )  <->  ( x  =  A  ->  ph )
)
43albii 1494 . . 3  |-  ( A. x ( x  e. 
{ A }  ->  ph )  <->  A. x ( x  =  A  ->  ph )
)
51, 4bitri 184 . 2  |-  ( A. x  e.  { A } ph  <->  A. x ( x  =  A  ->  ph )
)
6 sbc6g 3027 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
75, 6bitr4id 199 1  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2177   A.wral 2485   [.wsbc 3002   {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-sbc 3003  df-sn 3644
This theorem is referenced by:  ralsng  3678  sbcsng  3697  rabrsndc  3706  omsinds  4678  ssfirab  7048  dcfi  7098  uzsinds  10611
  Copyright terms: Public domain W3C validator