ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralsns Unicode version

Theorem ralsns 3656
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
ralsns  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  [. A  /  x ]. ph ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem ralsns
StepHypRef Expression
1 df-ral 2477 . . 3  |-  ( A. x  e.  { A } ph  <->  A. x ( x  e.  { A }  ->  ph ) )
2 velsn 3635 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
32imbi1i 238 . . . 4  |-  ( ( x  e.  { A }  ->  ph )  <->  ( x  =  A  ->  ph )
)
43albii 1481 . . 3  |-  ( A. x ( x  e. 
{ A }  ->  ph )  <->  A. x ( x  =  A  ->  ph )
)
51, 4bitri 184 . 2  |-  ( A. x  e.  { A } ph  <->  A. x ( x  =  A  ->  ph )
)
6 sbc6g 3010 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
75, 6bitr4id 199 1  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   A.wral 2472   [.wsbc 2985   {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-sbc 2986  df-sn 3624
This theorem is referenced by:  ralsng  3658  sbcsng  3677  rabrsndc  3686  omsinds  4654  ssfirab  6990  dcfi  7040  uzsinds  10515
  Copyright terms: Public domain W3C validator