Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralsns | Unicode version |
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralsns |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2440 | . . 3 | |
2 | velsn 3577 | . . . . 5 | |
3 | 2 | imbi1i 237 | . . . 4 |
4 | 3 | albii 1450 | . . 3 |
5 | 1, 4 | bitri 183 | . 2 |
6 | sbc6g 2961 | . 2 | |
7 | 5, 6 | bitr4id 198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1333 wceq 1335 wcel 2128 wral 2435 wsbc 2937 csn 3560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-sbc 2938 df-sn 3566 |
This theorem is referenced by: ralsng 3599 sbcsng 3618 rabrsndc 3627 omsinds 4580 ssfirab 6875 uzsinds 10334 |
Copyright terms: Public domain | W3C validator |