ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralsns Unicode version

Theorem ralsns 3597
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
ralsns  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  [. A  /  x ]. ph ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem ralsns
StepHypRef Expression
1 df-ral 2440 . . 3  |-  ( A. x  e.  { A } ph  <->  A. x ( x  e.  { A }  ->  ph ) )
2 velsn 3577 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
32imbi1i 237 . . . 4  |-  ( ( x  e.  { A }  ->  ph )  <->  ( x  =  A  ->  ph )
)
43albii 1450 . . 3  |-  ( A. x ( x  e. 
{ A }  ->  ph )  <->  A. x ( x  =  A  ->  ph )
)
51, 4bitri 183 . 2  |-  ( A. x  e.  { A } ph  <->  A. x ( x  =  A  ->  ph )
)
6 sbc6g 2961 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
75, 6bitr4id 198 1  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1333    = wceq 1335    e. wcel 2128   A.wral 2435   [.wsbc 2937   {csn 3560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-sbc 2938  df-sn 3566
This theorem is referenced by:  ralsng  3599  sbcsng  3618  rabrsndc  3627  omsinds  4580  ssfirab  6875  uzsinds  10334
  Copyright terms: Public domain W3C validator