| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ontr2exmid | Unicode version | ||
| Description: An ordinal transitivity law which implies excluded middle. (Contributed by Jim Kingdon, 17-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| ontr2exmid.1 | 
 | 
| Ref | Expression | 
|---|---|
| ontr2exmid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrab2 3268 | 
. . . . 5
 | |
| 2 | p0ex 4221 | 
. . . . . 6
 | |
| 3 | 2 | prid2 3729 | 
. . . . 5
 | 
| 4 | 2ordpr 4560 | 
. . . . . . 7
 | |
| 5 | pp0ex 4222 | 
. . . . . . . 8
 | |
| 6 | 5 | elon 4409 | 
. . . . . . 7
 | 
| 7 | 4, 6 | mpbir 146 | 
. . . . . 6
 | 
| 8 | ordtriexmidlem 4555 | 
. . . . . . . 8
 | |
| 9 | ontr2exmid.1 | 
. . . . . . . 8
 | |
| 10 | sseq1 3206 | 
. . . . . . . . . . . . 13
 | |
| 11 | 10 | anbi1d 465 | 
. . . . . . . . . . . 12
 | 
| 12 | eleq1 2259 | 
. . . . . . . . . . . 12
 | |
| 13 | 11, 12 | imbi12d 234 | 
. . . . . . . . . . 11
 | 
| 14 | 13 | ralbidv 2497 | 
. . . . . . . . . 10
 | 
| 15 | 14 | albidv 1838 | 
. . . . . . . . 9
 | 
| 16 | 15 | rspcv 2864 | 
. . . . . . . 8
 | 
| 17 | 8, 9, 16 | mp2 16 | 
. . . . . . 7
 | 
| 18 | sseq2 3207 | 
. . . . . . . . . . 11
 | |
| 19 | eleq1 2259 | 
. . . . . . . . . . 11
 | |
| 20 | 18, 19 | anbi12d 473 | 
. . . . . . . . . 10
 | 
| 21 | 20 | imbi1d 231 | 
. . . . . . . . 9
 | 
| 22 | 21 | ralbidv 2497 | 
. . . . . . . 8
 | 
| 23 | 2, 22 | spcv 2858 | 
. . . . . . 7
 | 
| 24 | 17, 23 | ax-mp 5 | 
. . . . . 6
 | 
| 25 | eleq2 2260 | 
. . . . . . . . 9
 | |
| 26 | 25 | anbi2d 464 | 
. . . . . . . 8
 | 
| 27 | eleq2 2260 | 
. . . . . . . 8
 | |
| 28 | 26, 27 | imbi12d 234 | 
. . . . . . 7
 | 
| 29 | 28 | rspcv 2864 | 
. . . . . 6
 | 
| 30 | 7, 24, 29 | mp2 16 | 
. . . . 5
 | 
| 31 | 1, 3, 30 | mp2an 426 | 
. . . 4
 | 
| 32 | elpri 3645 | 
. . . 4
 | |
| 33 | 31, 32 | ax-mp 5 | 
. . 3
 | 
| 34 | ordtriexmidlem2 4556 | 
. . . 4
 | |
| 35 | 0ex 4160 | 
. . . . 5
 | |
| 36 | biidd 172 | 
. . . . 5
 | |
| 37 | 35, 36 | rabsnt 3697 | 
. . . 4
 | 
| 38 | 34, 37 | orim12i 760 | 
. . 3
 | 
| 39 | 33, 38 | ax-mp 5 | 
. 2
 | 
| 40 | orcom 729 | 
. 2
 | |
| 41 | 39, 40 | mpbi 145 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |