| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ontr2exmid | Unicode version | ||
| Description: An ordinal transitivity law which implies excluded middle. (Contributed by Jim Kingdon, 17-Sep-2021.) |
| Ref | Expression |
|---|---|
| ontr2exmid.1 |
|
| Ref | Expression |
|---|---|
| ontr2exmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3309 |
. . . . 5
| |
| 2 | p0ex 4272 |
. . . . . 6
| |
| 3 | 2 | prid2 3773 |
. . . . 5
|
| 4 | 2ordpr 4616 |
. . . . . . 7
| |
| 5 | pp0ex 4273 |
. . . . . . . 8
| |
| 6 | 5 | elon 4465 |
. . . . . . 7
|
| 7 | 4, 6 | mpbir 146 |
. . . . . 6
|
| 8 | ordtriexmidlem 4611 |
. . . . . . . 8
| |
| 9 | ontr2exmid.1 |
. . . . . . . 8
| |
| 10 | sseq1 3247 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | anbi1d 465 |
. . . . . . . . . . . 12
|
| 12 | eleq1 2292 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | imbi12d 234 |
. . . . . . . . . . 11
|
| 14 | 13 | ralbidv 2530 |
. . . . . . . . . 10
|
| 15 | 14 | albidv 1870 |
. . . . . . . . 9
|
| 16 | 15 | rspcv 2903 |
. . . . . . . 8
|
| 17 | 8, 9, 16 | mp2 16 |
. . . . . . 7
|
| 18 | sseq2 3248 |
. . . . . . . . . . 11
| |
| 19 | eleq1 2292 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | anbi12d 473 |
. . . . . . . . . 10
|
| 21 | 20 | imbi1d 231 |
. . . . . . . . 9
|
| 22 | 21 | ralbidv 2530 |
. . . . . . . 8
|
| 23 | 2, 22 | spcv 2897 |
. . . . . . 7
|
| 24 | 17, 23 | ax-mp 5 |
. . . . . 6
|
| 25 | eleq2 2293 |
. . . . . . . . 9
| |
| 26 | 25 | anbi2d 464 |
. . . . . . . 8
|
| 27 | eleq2 2293 |
. . . . . . . 8
| |
| 28 | 26, 27 | imbi12d 234 |
. . . . . . 7
|
| 29 | 28 | rspcv 2903 |
. . . . . 6
|
| 30 | 7, 24, 29 | mp2 16 |
. . . . 5
|
| 31 | 1, 3, 30 | mp2an 426 |
. . . 4
|
| 32 | elpri 3689 |
. . . 4
| |
| 33 | 31, 32 | ax-mp 5 |
. . 3
|
| 34 | ordtriexmidlem2 4612 |
. . . 4
| |
| 35 | 0ex 4211 |
. . . . 5
| |
| 36 | biidd 172 |
. . . . 5
| |
| 37 | 35, 36 | rabsnt 3741 |
. . . 4
|
| 38 | 34, 37 | orim12i 764 |
. . 3
|
| 39 | 33, 38 | ax-mp 5 |
. 2
|
| 40 | orcom 733 |
. 2
| |
| 41 | 39, 40 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |