Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ontr2exmid | Unicode version |
Description: An ordinal transitivity law which implies excluded middle. (Contributed by Jim Kingdon, 17-Sep-2021.) |
Ref | Expression |
---|---|
ontr2exmid.1 |
Ref | Expression |
---|---|
ontr2exmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3213 | . . . . 5 | |
2 | p0ex 4152 | . . . . . 6 | |
3 | 2 | prid2 3668 | . . . . 5 |
4 | 2ordpr 4486 | . . . . . . 7 | |
5 | pp0ex 4153 | . . . . . . . 8 | |
6 | 5 | elon 4337 | . . . . . . 7 |
7 | 4, 6 | mpbir 145 | . . . . . 6 |
8 | ordtriexmidlem 4481 | . . . . . . . 8 | |
9 | ontr2exmid.1 | . . . . . . . 8 | |
10 | sseq1 3151 | . . . . . . . . . . . . 13 | |
11 | 10 | anbi1d 461 | . . . . . . . . . . . 12 |
12 | eleq1 2220 | . . . . . . . . . . . 12 | |
13 | 11, 12 | imbi12d 233 | . . . . . . . . . . 11 |
14 | 13 | ralbidv 2457 | . . . . . . . . . 10 |
15 | 14 | albidv 1804 | . . . . . . . . 9 |
16 | 15 | rspcv 2812 | . . . . . . . 8 |
17 | 8, 9, 16 | mp2 16 | . . . . . . 7 |
18 | sseq2 3152 | . . . . . . . . . . 11 | |
19 | eleq1 2220 | . . . . . . . . . . 11 | |
20 | 18, 19 | anbi12d 465 | . . . . . . . . . 10 |
21 | 20 | imbi1d 230 | . . . . . . . . 9 |
22 | 21 | ralbidv 2457 | . . . . . . . 8 |
23 | 2, 22 | spcv 2806 | . . . . . . 7 |
24 | 17, 23 | ax-mp 5 | . . . . . 6 |
25 | eleq2 2221 | . . . . . . . . 9 | |
26 | 25 | anbi2d 460 | . . . . . . . 8 |
27 | eleq2 2221 | . . . . . . . 8 | |
28 | 26, 27 | imbi12d 233 | . . . . . . 7 |
29 | 28 | rspcv 2812 | . . . . . 6 |
30 | 7, 24, 29 | mp2 16 | . . . . 5 |
31 | 1, 3, 30 | mp2an 423 | . . . 4 |
32 | elpri 3584 | . . . 4 | |
33 | 31, 32 | ax-mp 5 | . . 3 |
34 | ordtriexmidlem2 4482 | . . . 4 | |
35 | 0ex 4094 | . . . . 5 | |
36 | biidd 171 | . . . . 5 | |
37 | 35, 36 | rabsnt 3636 | . . . 4 |
38 | 34, 37 | orim12i 749 | . . 3 |
39 | 33, 38 | ax-mp 5 | . 2 |
40 | orcom 718 | . 2 | |
41 | 39, 40 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wal 1333 wceq 1335 wcel 2128 wral 2435 crab 2439 wss 3102 c0 3395 csn 3561 cpr 3562 word 4325 con0 4326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4085 ax-nul 4093 ax-pow 4138 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-pw 3546 df-sn 3567 df-pr 3568 df-uni 3775 df-tr 4066 df-iord 4329 df-on 4331 df-suc 4334 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |