| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabsnt | GIF version | ||
| Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| rabsnt.1 | ⊢ 𝐵 ∈ V |
| rabsnt.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabsnt | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsnt.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | 1 | snid 3697 | . . 3 ⊢ 𝐵 ∈ {𝐵} |
| 3 | id 19 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵}) | |
| 4 | 2, 3 | eleqtrrid 2319 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| 5 | rabsnt.2 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | elrab 2959 | . . 3 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ∈ 𝐴 ∧ 𝜓)) |
| 7 | 6 | simprbi 275 | . 2 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜓) |
| 8 | 4, 7 | syl 14 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {crab 2512 Vcvv 2799 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-sn 3672 |
| This theorem is referenced by: ontr2exmid 4616 onsucsssucexmid 4618 ordsoexmid 4653 unfiexmid 7076 |
| Copyright terms: Public domain | W3C validator |