| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rabsnt | GIF version | ||
| Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| rabsnt.1 | ⊢ 𝐵 ∈ V | 
| rabsnt.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| rabsnt | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rabsnt.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | 1 | snid 3653 | . . 3 ⊢ 𝐵 ∈ {𝐵} | 
| 3 | id 19 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵}) | |
| 4 | 2, 3 | eleqtrrid 2286 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | 
| 5 | rabsnt.2 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | elrab 2920 | . . 3 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ∈ 𝐴 ∧ 𝜓)) | 
| 7 | 6 | simprbi 275 | . 2 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜓) | 
| 8 | 4, 7 | syl 14 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {crab 2479 Vcvv 2763 {csn 3622 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-sn 3628 | 
| This theorem is referenced by: ontr2exmid 4561 onsucsssucexmid 4563 ordsoexmid 4598 unfiexmid 6979 | 
| Copyright terms: Public domain | W3C validator |