ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsnt GIF version

Theorem rabsnt 3713
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
rabsnt.1 𝐵 ∈ V
rabsnt.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rabsnt ({𝑥𝐴𝜑} = {𝐵} → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabsnt
StepHypRef Expression
1 rabsnt.1 . . . 4 𝐵 ∈ V
21snid 3669 . . 3 𝐵 ∈ {𝐵}
3 id 19 . . 3 ({𝑥𝐴𝜑} = {𝐵} → {𝑥𝐴𝜑} = {𝐵})
42, 3eleqtrrid 2296 . 2 ({𝑥𝐴𝜑} = {𝐵} → 𝐵 ∈ {𝑥𝐴𝜑})
5 rabsnt.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
65elrab 2933 . . 3 (𝐵 ∈ {𝑥𝐴𝜑} ↔ (𝐵𝐴𝜓))
76simprbi 275 . 2 (𝐵 ∈ {𝑥𝐴𝜑} → 𝜓)
84, 7syl 14 1 ({𝑥𝐴𝜑} = {𝐵} → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  {crab 2489  Vcvv 2773  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-sn 3644
This theorem is referenced by:  ontr2exmid  4581  onsucsssucexmid  4583  ordsoexmid  4618  unfiexmid  7030
  Copyright terms: Public domain W3C validator