ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsnt GIF version

Theorem rabsnt 3693
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
rabsnt.1 𝐵 ∈ V
rabsnt.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rabsnt ({𝑥𝐴𝜑} = {𝐵} → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabsnt
StepHypRef Expression
1 rabsnt.1 . . . 4 𝐵 ∈ V
21snid 3649 . . 3 𝐵 ∈ {𝐵}
3 id 19 . . 3 ({𝑥𝐴𝜑} = {𝐵} → {𝑥𝐴𝜑} = {𝐵})
42, 3eleqtrrid 2283 . 2 ({𝑥𝐴𝜑} = {𝐵} → 𝐵 ∈ {𝑥𝐴𝜑})
5 rabsnt.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
65elrab 2916 . . 3 (𝐵 ∈ {𝑥𝐴𝜑} ↔ (𝐵𝐴𝜓))
76simprbi 275 . 2 (𝐵 ∈ {𝑥𝐴𝜑} → 𝜓)
84, 7syl 14 1 ({𝑥𝐴𝜑} = {𝐵} → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  {crab 2476  Vcvv 2760  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-sn 3624
This theorem is referenced by:  ontr2exmid  4557  onsucsssucexmid  4559  ordsoexmid  4594  unfiexmid  6974
  Copyright terms: Public domain W3C validator