| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unfiexmid | Unicode version | ||
| Description: If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.) |
| Ref | Expression |
|---|---|
| unfiexmid.1 |
|
| Ref | Expression |
|---|---|
| unfiexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3673 |
. . . . 5
| |
| 2 | unfiexmid.1 |
. . . . . . 7
| |
| 3 | 2 | rgen2a 2584 |
. . . . . 6
|
| 4 | df1o2 6575 |
. . . . . . . . . 10
| |
| 5 | rabeq 2791 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . 9
|
| 7 | ordtriexmidlem 4611 |
. . . . . . . . 9
| |
| 8 | 6, 7 | eqeltri 2302 |
. . . . . . . 8
|
| 9 | snfig 6967 |
. . . . . . . 8
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . 7
|
| 11 | 1onn 6666 |
. . . . . . . 8
| |
| 12 | snfig 6967 |
. . . . . . . 8
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . 7
|
| 14 | uneq1 3351 |
. . . . . . . . 9
| |
| 15 | 14 | eleq1d 2298 |
. . . . . . . 8
|
| 16 | uneq2 3352 |
. . . . . . . . 9
| |
| 17 | 16 | eleq1d 2298 |
. . . . . . . 8
|
| 18 | 15, 17 | rspc2v 2920 |
. . . . . . 7
|
| 19 | 10, 13, 18 | mp2an 426 |
. . . . . 6
|
| 20 | 3, 19 | ax-mp 5 |
. . . . 5
|
| 21 | 1, 20 | eqeltri 2302 |
. . . 4
|
| 22 | 8 | elexi 2812 |
. . . . 5
|
| 23 | 22 | prid1 3772 |
. . . 4
|
| 24 | 11 | elexi 2812 |
. . . . 5
|
| 25 | 24 | prid2 3773 |
. . . 4
|
| 26 | fidceq 7031 |
. . . 4
| |
| 27 | 21, 23, 25, 26 | mp3an 1371 |
. . 3
|
| 28 | exmiddc 841 |
. . 3
| |
| 29 | 27, 28 | ax-mp 5 |
. 2
|
| 30 | 4 | eqeq2i 2240 |
. . . 4
|
| 31 | 0ex 4211 |
. . . . 5
| |
| 32 | biidd 172 |
. . . . 5
| |
| 33 | 31, 32 | rabsnt 3741 |
. . . 4
|
| 34 | 30, 33 | sylbi 121 |
. . 3
|
| 35 | df-rab 2517 |
. . . . 5
| |
| 36 | iba 300 |
. . . . . 6
| |
| 37 | 36 | abbi2dv 2348 |
. . . . 5
|
| 38 | 35, 37 | eqtr4id 2281 |
. . . 4
|
| 39 | 38 | con3i 635 |
. . 3
|
| 40 | 34, 39 | orim12i 764 |
. 2
|
| 41 | 29, 40 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1o 6562 df-en 6888 df-fin 6890 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |