| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unfiexmid | Unicode version | ||
| Description: If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.) |
| Ref | Expression |
|---|---|
| unfiexmid.1 |
|
| Ref | Expression |
|---|---|
| unfiexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3640 |
. . . . 5
| |
| 2 | unfiexmid.1 |
. . . . . . 7
| |
| 3 | 2 | rgen2a 2560 |
. . . . . 6
|
| 4 | df1o2 6515 |
. . . . . . . . . 10
| |
| 5 | rabeq 2764 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . 9
|
| 7 | ordtriexmidlem 4567 |
. . . . . . . . 9
| |
| 8 | 6, 7 | eqeltri 2278 |
. . . . . . . 8
|
| 9 | snfig 6906 |
. . . . . . . 8
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . 7
|
| 11 | 1onn 6606 |
. . . . . . . 8
| |
| 12 | snfig 6906 |
. . . . . . . 8
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . 7
|
| 14 | uneq1 3320 |
. . . . . . . . 9
| |
| 15 | 14 | eleq1d 2274 |
. . . . . . . 8
|
| 16 | uneq2 3321 |
. . . . . . . . 9
| |
| 17 | 16 | eleq1d 2274 |
. . . . . . . 8
|
| 18 | 15, 17 | rspc2v 2890 |
. . . . . . 7
|
| 19 | 10, 13, 18 | mp2an 426 |
. . . . . 6
|
| 20 | 3, 19 | ax-mp 5 |
. . . . 5
|
| 21 | 1, 20 | eqeltri 2278 |
. . . 4
|
| 22 | 8 | elexi 2784 |
. . . . 5
|
| 23 | 22 | prid1 3739 |
. . . 4
|
| 24 | 11 | elexi 2784 |
. . . . 5
|
| 25 | 24 | prid2 3740 |
. . . 4
|
| 26 | fidceq 6966 |
. . . 4
| |
| 27 | 21, 23, 25, 26 | mp3an 1350 |
. . 3
|
| 28 | exmiddc 838 |
. . 3
| |
| 29 | 27, 28 | ax-mp 5 |
. 2
|
| 30 | 4 | eqeq2i 2216 |
. . . 4
|
| 31 | 0ex 4171 |
. . . . 5
| |
| 32 | biidd 172 |
. . . . 5
| |
| 33 | 31, 32 | rabsnt 3708 |
. . . 4
|
| 34 | 30, 33 | sylbi 121 |
. . 3
|
| 35 | df-rab 2493 |
. . . . 5
| |
| 36 | iba 300 |
. . . . . 6
| |
| 37 | 36 | abbi2dv 2324 |
. . . . 5
|
| 38 | 35, 37 | eqtr4id 2257 |
. . . 4
|
| 39 | 38 | con3i 633 |
. . 3
|
| 40 | 34, 39 | orim12i 761 |
. 2
|
| 41 | 29, 40 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1o 6502 df-en 6828 df-fin 6830 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |