ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiexmid Unicode version

Theorem unfiexmid 6917
Description: If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.)
Hypothesis
Ref Expression
unfiexmid.1  |-  ( ( x  e.  Fin  /\  y  e.  Fin )  ->  ( x  u.  y
)  e.  Fin )
Assertion
Ref Expression
unfiexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem unfiexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-pr 3600 . . . . 5  |-  { {
z  e.  1o  |  ph } ,  1o }  =  ( { {
z  e.  1o  |  ph } }  u.  { 1o } )
2 unfiexmid.1 . . . . . . 7  |-  ( ( x  e.  Fin  /\  y  e.  Fin )  ->  ( x  u.  y
)  e.  Fin )
32rgen2a 2531 . . . . . 6  |-  A. x  e.  Fin  A. y  e. 
Fin  ( x  u.  y )  e.  Fin
4 df1o2 6430 . . . . . . . . . 10  |-  1o  =  { (/) }
5 rabeq 2730 . . . . . . . . . 10  |-  ( 1o  =  { (/) }  ->  { z  e.  1o  |  ph }  =  { z  e.  { (/) }  |  ph } )
64, 5ax-mp 5 . . . . . . . . 9  |-  { z  e.  1o  |  ph }  =  { z  e.  { (/) }  |  ph }
7 ordtriexmidlem 4519 . . . . . . . . 9  |-  { z  e.  { (/) }  |  ph }  e.  On
86, 7eqeltri 2250 . . . . . . . 8  |-  { z  e.  1o  |  ph }  e.  On
9 snfig 6814 . . . . . . . 8  |-  ( { z  e.  1o  |  ph }  e.  On  ->  { { z  e.  1o  |  ph } }  e.  Fin )
108, 9ax-mp 5 . . . . . . 7  |-  { {
z  e.  1o  |  ph } }  e.  Fin
11 1onn 6521 . . . . . . . 8  |-  1o  e.  om
12 snfig 6814 . . . . . . . 8  |-  ( 1o  e.  om  ->  { 1o }  e.  Fin )
1311, 12ax-mp 5 . . . . . . 7  |-  { 1o }  e.  Fin
14 uneq1 3283 . . . . . . . . 9  |-  ( x  =  { { z  e.  1o  |  ph } }  ->  ( x  u.  y )  =  ( { { z  e.  1o  |  ph } }  u.  y
) )
1514eleq1d 2246 . . . . . . . 8  |-  ( x  =  { { z  e.  1o  |  ph } }  ->  ( ( x  u.  y )  e.  Fin  <->  ( { { z  e.  1o  |  ph } }  u.  y )  e.  Fin ) )
16 uneq2 3284 . . . . . . . . 9  |-  ( y  =  { 1o }  ->  ( { { z  e.  1o  |  ph } }  u.  y
)  =  ( { { z  e.  1o  |  ph } }  u.  { 1o } ) )
1716eleq1d 2246 . . . . . . . 8  |-  ( y  =  { 1o }  ->  ( ( { {
z  e.  1o  |  ph } }  u.  y
)  e.  Fin  <->  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e. 
Fin ) )
1815, 17rspc2v 2855 . . . . . . 7  |-  ( ( { { z  e.  1o  |  ph } }  e.  Fin  /\  { 1o }  e.  Fin )  ->  ( A. x  e. 
Fin  A. y  e.  Fin  ( x  u.  y
)  e.  Fin  ->  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e.  Fin ) )
1910, 13, 18mp2an 426 . . . . . 6  |-  ( A. x  e.  Fin  A. y  e.  Fin  ( x  u.  y )  e.  Fin  ->  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e.  Fin )
203, 19ax-mp 5 . . . . 5  |-  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e. 
Fin
211, 20eqeltri 2250 . . . 4  |-  { {
z  e.  1o  |  ph } ,  1o }  e.  Fin
228elexi 2750 . . . . 5  |-  { z  e.  1o  |  ph }  e.  _V
2322prid1 3699 . . . 4  |-  { z  e.  1o  |  ph }  e.  { { z  e.  1o  |  ph } ,  1o }
2411elexi 2750 . . . . 5  |-  1o  e.  _V
2524prid2 3700 . . . 4  |-  1o  e.  { { z  e.  1o  |  ph } ,  1o }
26 fidceq 6869 . . . 4  |-  ( ( { { z  e.  1o  |  ph } ,  1o }  e.  Fin  /\ 
{ z  e.  1o  |  ph }  e.  { { z  e.  1o  |  ph } ,  1o }  /\  1o  e.  { { z  e.  1o  |  ph } ,  1o } )  -> DECID  { z  e.  1o  |  ph }  =  1o )
2721, 23, 25, 26mp3an 1337 . . 3  |- DECID  { z  e.  1o  |  ph }  =  1o
28 exmiddc 836 . . 3  |-  (DECID  { z  e.  1o  |  ph }  =  1o  ->  ( { z  e.  1o  |  ph }  =  1o  \/  -.  { z  e.  1o  |  ph }  =  1o )
)
2927, 28ax-mp 5 . 2  |-  ( { z  e.  1o  |  ph }  =  1o  \/  -.  { z  e.  1o  |  ph }  =  1o )
304eqeq2i 2188 . . . 4  |-  ( { z  e.  1o  |  ph }  =  1o  <->  { z  e.  1o  |  ph }  =  { (/) } )
31 0ex 4131 . . . . 5  |-  (/)  e.  _V
32 biidd 172 . . . . 5  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
3331, 32rabsnt 3668 . . . 4  |-  ( { z  e.  1o  |  ph }  =  { (/) }  ->  ph )
3430, 33sylbi 121 . . 3  |-  ( { z  e.  1o  |  ph }  =  1o  ->  ph )
35 df-rab 2464 . . . . 5  |-  { z  e.  1o  |  ph }  =  { z  |  ( z  e.  1o  /\  ph ) }
36 iba 300 . . . . . 6  |-  ( ph  ->  ( z  e.  1o  <->  ( z  e.  1o  /\  ph ) ) )
3736abbi2dv 2296 . . . . 5  |-  ( ph  ->  1o  =  { z  |  ( z  e.  1o  /\  ph ) } )
3835, 37eqtr4id 2229 . . . 4  |-  ( ph  ->  { z  e.  1o  |  ph }  =  1o )
3938con3i 632 . . 3  |-  ( -. 
{ z  e.  1o  |  ph }  =  1o 
->  -.  ph )
4034, 39orim12i 759 . 2  |-  ( ( { z  e.  1o  |  ph }  =  1o  \/  -.  { z  e.  1o  |  ph }  =  1o )  ->  ( ph  \/  -.  ph ) )
4129, 40ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   {crab 2459    u. cun 3128   (/)c0 3423   {csn 3593   {cpr 3594   Oncon0 4364   omcom 4590   1oc1o 6410   Fincfn 6740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1o 6417  df-en 6741  df-fin 6743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator