ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiexmid Unicode version

Theorem unfiexmid 6806
Description: If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.)
Hypothesis
Ref Expression
unfiexmid.1  |-  ( ( x  e.  Fin  /\  y  e.  Fin )  ->  ( x  u.  y
)  e.  Fin )
Assertion
Ref Expression
unfiexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem unfiexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-pr 3534 . . . . 5  |-  { {
z  e.  1o  |  ph } ,  1o }  =  ( { {
z  e.  1o  |  ph } }  u.  { 1o } )
2 unfiexmid.1 . . . . . . 7  |-  ( ( x  e.  Fin  /\  y  e.  Fin )  ->  ( x  u.  y
)  e.  Fin )
32rgen2a 2486 . . . . . 6  |-  A. x  e.  Fin  A. y  e. 
Fin  ( x  u.  y )  e.  Fin
4 df1o2 6326 . . . . . . . . . 10  |-  1o  =  { (/) }
5 rabeq 2678 . . . . . . . . . 10  |-  ( 1o  =  { (/) }  ->  { z  e.  1o  |  ph }  =  { z  e.  { (/) }  |  ph } )
64, 5ax-mp 5 . . . . . . . . 9  |-  { z  e.  1o  |  ph }  =  { z  e.  { (/) }  |  ph }
7 ordtriexmidlem 4435 . . . . . . . . 9  |-  { z  e.  { (/) }  |  ph }  e.  On
86, 7eqeltri 2212 . . . . . . . 8  |-  { z  e.  1o  |  ph }  e.  On
9 snfig 6708 . . . . . . . 8  |-  ( { z  e.  1o  |  ph }  e.  On  ->  { { z  e.  1o  |  ph } }  e.  Fin )
108, 9ax-mp 5 . . . . . . 7  |-  { {
z  e.  1o  |  ph } }  e.  Fin
11 1onn 6416 . . . . . . . 8  |-  1o  e.  om
12 snfig 6708 . . . . . . . 8  |-  ( 1o  e.  om  ->  { 1o }  e.  Fin )
1311, 12ax-mp 5 . . . . . . 7  |-  { 1o }  e.  Fin
14 uneq1 3223 . . . . . . . . 9  |-  ( x  =  { { z  e.  1o  |  ph } }  ->  ( x  u.  y )  =  ( { { z  e.  1o  |  ph } }  u.  y
) )
1514eleq1d 2208 . . . . . . . 8  |-  ( x  =  { { z  e.  1o  |  ph } }  ->  ( ( x  u.  y )  e.  Fin  <->  ( { { z  e.  1o  |  ph } }  u.  y )  e.  Fin ) )
16 uneq2 3224 . . . . . . . . 9  |-  ( y  =  { 1o }  ->  ( { { z  e.  1o  |  ph } }  u.  y
)  =  ( { { z  e.  1o  |  ph } }  u.  { 1o } ) )
1716eleq1d 2208 . . . . . . . 8  |-  ( y  =  { 1o }  ->  ( ( { {
z  e.  1o  |  ph } }  u.  y
)  e.  Fin  <->  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e. 
Fin ) )
1815, 17rspc2v 2802 . . . . . . 7  |-  ( ( { { z  e.  1o  |  ph } }  e.  Fin  /\  { 1o }  e.  Fin )  ->  ( A. x  e. 
Fin  A. y  e.  Fin  ( x  u.  y
)  e.  Fin  ->  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e.  Fin ) )
1910, 13, 18mp2an 422 . . . . . 6  |-  ( A. x  e.  Fin  A. y  e.  Fin  ( x  u.  y )  e.  Fin  ->  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e.  Fin )
203, 19ax-mp 5 . . . . 5  |-  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e. 
Fin
211, 20eqeltri 2212 . . . 4  |-  { {
z  e.  1o  |  ph } ,  1o }  e.  Fin
228elexi 2698 . . . . 5  |-  { z  e.  1o  |  ph }  e.  _V
2322prid1 3629 . . . 4  |-  { z  e.  1o  |  ph }  e.  { { z  e.  1o  |  ph } ,  1o }
2411elexi 2698 . . . . 5  |-  1o  e.  _V
2524prid2 3630 . . . 4  |-  1o  e.  { { z  e.  1o  |  ph } ,  1o }
26 fidceq 6763 . . . 4  |-  ( ( { { z  e.  1o  |  ph } ,  1o }  e.  Fin  /\ 
{ z  e.  1o  |  ph }  e.  { { z  e.  1o  |  ph } ,  1o }  /\  1o  e.  { { z  e.  1o  |  ph } ,  1o } )  -> DECID  { z  e.  1o  |  ph }  =  1o )
2721, 23, 25, 26mp3an 1315 . . 3  |- DECID  { z  e.  1o  |  ph }  =  1o
28 exmiddc 821 . . 3  |-  (DECID  { z  e.  1o  |  ph }  =  1o  ->  ( { z  e.  1o  |  ph }  =  1o  \/  -.  { z  e.  1o  |  ph }  =  1o )
)
2927, 28ax-mp 5 . 2  |-  ( { z  e.  1o  |  ph }  =  1o  \/  -.  { z  e.  1o  |  ph }  =  1o )
304eqeq2i 2150 . . . 4  |-  ( { z  e.  1o  |  ph }  =  1o  <->  { z  e.  1o  |  ph }  =  { (/) } )
31 0ex 4055 . . . . 5  |-  (/)  e.  _V
32 biidd 171 . . . . 5  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
3331, 32rabsnt 3598 . . . 4  |-  ( { z  e.  1o  |  ph }  =  { (/) }  ->  ph )
3430, 33sylbi 120 . . 3  |-  ( { z  e.  1o  |  ph }  =  1o  ->  ph )
35 iba 298 . . . . . 6  |-  ( ph  ->  ( z  e.  1o  <->  ( z  e.  1o  /\  ph ) ) )
3635abbi2dv 2258 . . . . 5  |-  ( ph  ->  1o  =  { z  |  ( z  e.  1o  /\  ph ) } )
37 df-rab 2425 . . . . 5  |-  { z  e.  1o  |  ph }  =  { z  |  ( z  e.  1o  /\  ph ) }
3836, 37syl6reqr 2191 . . . 4  |-  ( ph  ->  { z  e.  1o  |  ph }  =  1o )
3938con3i 621 . . 3  |-  ( -. 
{ z  e.  1o  |  ph }  =  1o 
->  -.  ph )
4034, 39orim12i 748 . 2  |-  ( ( { z  e.  1o  |  ph }  =  1o  \/  -.  { z  e.  1o  |  ph }  =  1o )  ->  ( ph  \/  -.  ph ) )
4129, 40ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   {crab 2420    u. cun 3069   (/)c0 3363   {csn 3527   {cpr 3528   Oncon0 4285   omcom 4504   1oc1o 6306   Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-en 6635  df-fin 6637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator