ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiexmid Unicode version

Theorem unfiexmid 6814
Description: If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.)
Hypothesis
Ref Expression
unfiexmid.1  |-  ( ( x  e.  Fin  /\  y  e.  Fin )  ->  ( x  u.  y
)  e.  Fin )
Assertion
Ref Expression
unfiexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem unfiexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-pr 3539 . . . . 5  |-  { {
z  e.  1o  |  ph } ,  1o }  =  ( { {
z  e.  1o  |  ph } }  u.  { 1o } )
2 unfiexmid.1 . . . . . . 7  |-  ( ( x  e.  Fin  /\  y  e.  Fin )  ->  ( x  u.  y
)  e.  Fin )
32rgen2a 2489 . . . . . 6  |-  A. x  e.  Fin  A. y  e. 
Fin  ( x  u.  y )  e.  Fin
4 df1o2 6334 . . . . . . . . . 10  |-  1o  =  { (/) }
5 rabeq 2681 . . . . . . . . . 10  |-  ( 1o  =  { (/) }  ->  { z  e.  1o  |  ph }  =  { z  e.  { (/) }  |  ph } )
64, 5ax-mp 5 . . . . . . . . 9  |-  { z  e.  1o  |  ph }  =  { z  e.  { (/) }  |  ph }
7 ordtriexmidlem 4443 . . . . . . . . 9  |-  { z  e.  { (/) }  |  ph }  e.  On
86, 7eqeltri 2213 . . . . . . . 8  |-  { z  e.  1o  |  ph }  e.  On
9 snfig 6716 . . . . . . . 8  |-  ( { z  e.  1o  |  ph }  e.  On  ->  { { z  e.  1o  |  ph } }  e.  Fin )
108, 9ax-mp 5 . . . . . . 7  |-  { {
z  e.  1o  |  ph } }  e.  Fin
11 1onn 6424 . . . . . . . 8  |-  1o  e.  om
12 snfig 6716 . . . . . . . 8  |-  ( 1o  e.  om  ->  { 1o }  e.  Fin )
1311, 12ax-mp 5 . . . . . . 7  |-  { 1o }  e.  Fin
14 uneq1 3228 . . . . . . . . 9  |-  ( x  =  { { z  e.  1o  |  ph } }  ->  ( x  u.  y )  =  ( { { z  e.  1o  |  ph } }  u.  y
) )
1514eleq1d 2209 . . . . . . . 8  |-  ( x  =  { { z  e.  1o  |  ph } }  ->  ( ( x  u.  y )  e.  Fin  <->  ( { { z  e.  1o  |  ph } }  u.  y )  e.  Fin ) )
16 uneq2 3229 . . . . . . . . 9  |-  ( y  =  { 1o }  ->  ( { { z  e.  1o  |  ph } }  u.  y
)  =  ( { { z  e.  1o  |  ph } }  u.  { 1o } ) )
1716eleq1d 2209 . . . . . . . 8  |-  ( y  =  { 1o }  ->  ( ( { {
z  e.  1o  |  ph } }  u.  y
)  e.  Fin  <->  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e. 
Fin ) )
1815, 17rspc2v 2806 . . . . . . 7  |-  ( ( { { z  e.  1o  |  ph } }  e.  Fin  /\  { 1o }  e.  Fin )  ->  ( A. x  e. 
Fin  A. y  e.  Fin  ( x  u.  y
)  e.  Fin  ->  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e.  Fin ) )
1910, 13, 18mp2an 423 . . . . . 6  |-  ( A. x  e.  Fin  A. y  e.  Fin  ( x  u.  y )  e.  Fin  ->  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e.  Fin )
203, 19ax-mp 5 . . . . 5  |-  ( { { z  e.  1o  |  ph } }  u.  { 1o } )  e. 
Fin
211, 20eqeltri 2213 . . . 4  |-  { {
z  e.  1o  |  ph } ,  1o }  e.  Fin
228elexi 2701 . . . . 5  |-  { z  e.  1o  |  ph }  e.  _V
2322prid1 3637 . . . 4  |-  { z  e.  1o  |  ph }  e.  { { z  e.  1o  |  ph } ,  1o }
2411elexi 2701 . . . . 5  |-  1o  e.  _V
2524prid2 3638 . . . 4  |-  1o  e.  { { z  e.  1o  |  ph } ,  1o }
26 fidceq 6771 . . . 4  |-  ( ( { { z  e.  1o  |  ph } ,  1o }  e.  Fin  /\ 
{ z  e.  1o  |  ph }  e.  { { z  e.  1o  |  ph } ,  1o }  /\  1o  e.  { { z  e.  1o  |  ph } ,  1o } )  -> DECID  { z  e.  1o  |  ph }  =  1o )
2721, 23, 25, 26mp3an 1316 . . 3  |- DECID  { z  e.  1o  |  ph }  =  1o
28 exmiddc 822 . . 3  |-  (DECID  { z  e.  1o  |  ph }  =  1o  ->  ( { z  e.  1o  |  ph }  =  1o  \/  -.  { z  e.  1o  |  ph }  =  1o )
)
2927, 28ax-mp 5 . 2  |-  ( { z  e.  1o  |  ph }  =  1o  \/  -.  { z  e.  1o  |  ph }  =  1o )
304eqeq2i 2151 . . . 4  |-  ( { z  e.  1o  |  ph }  =  1o  <->  { z  e.  1o  |  ph }  =  { (/) } )
31 0ex 4063 . . . . 5  |-  (/)  e.  _V
32 biidd 171 . . . . 5  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
3331, 32rabsnt 3606 . . . 4  |-  ( { z  e.  1o  |  ph }  =  { (/) }  ->  ph )
3430, 33sylbi 120 . . 3  |-  ( { z  e.  1o  |  ph }  =  1o  ->  ph )
35 df-rab 2426 . . . . 5  |-  { z  e.  1o  |  ph }  =  { z  |  ( z  e.  1o  /\  ph ) }
36 iba 298 . . . . . 6  |-  ( ph  ->  ( z  e.  1o  <->  ( z  e.  1o  /\  ph ) ) )
3736abbi2dv 2259 . . . . 5  |-  ( ph  ->  1o  =  { z  |  ( z  e.  1o  /\  ph ) } )
3835, 37eqtr4id 2192 . . . 4  |-  ( ph  ->  { z  e.  1o  |  ph }  =  1o )
3938con3i 622 . . 3  |-  ( -. 
{ z  e.  1o  |  ph }  =  1o 
->  -.  ph )
4034, 39orim12i 749 . 2  |-  ( ( { z  e.  1o  |  ph }  =  1o  \/  -.  { z  e.  1o  |  ph }  =  1o )  ->  ( ph  \/  -.  ph ) )
4129, 40ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 1481   {cab 2126   A.wral 2417   {crab 2421    u. cun 3074   (/)c0 3368   {csn 3532   {cpr 3533   Oncon0 4293   omcom 4512   1oc1o 6314   Fincfn 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1o 6321  df-en 6643  df-fin 6645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator