Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unfiexmid | Unicode version |
Description: If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.) |
Ref | Expression |
---|---|
unfiexmid.1 |
Ref | Expression |
---|---|
unfiexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3583 | . . . . 5 | |
2 | unfiexmid.1 | . . . . . . 7 | |
3 | 2 | rgen2a 2520 | . . . . . 6 |
4 | df1o2 6397 | . . . . . . . . . 10 | |
5 | rabeq 2718 | . . . . . . . . . 10 | |
6 | 4, 5 | ax-mp 5 | . . . . . . . . 9 |
7 | ordtriexmidlem 4496 | . . . . . . . . 9 | |
8 | 6, 7 | eqeltri 2239 | . . . . . . . 8 |
9 | snfig 6780 | . . . . . . . 8 | |
10 | 8, 9 | ax-mp 5 | . . . . . . 7 |
11 | 1onn 6488 | . . . . . . . 8 | |
12 | snfig 6780 | . . . . . . . 8 | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 |
14 | uneq1 3269 | . . . . . . . . 9 | |
15 | 14 | eleq1d 2235 | . . . . . . . 8 |
16 | uneq2 3270 | . . . . . . . . 9 | |
17 | 16 | eleq1d 2235 | . . . . . . . 8 |
18 | 15, 17 | rspc2v 2843 | . . . . . . 7 |
19 | 10, 13, 18 | mp2an 423 | . . . . . 6 |
20 | 3, 19 | ax-mp 5 | . . . . 5 |
21 | 1, 20 | eqeltri 2239 | . . . 4 |
22 | 8 | elexi 2738 | . . . . 5 |
23 | 22 | prid1 3682 | . . . 4 |
24 | 11 | elexi 2738 | . . . . 5 |
25 | 24 | prid2 3683 | . . . 4 |
26 | fidceq 6835 | . . . 4 DECID | |
27 | 21, 23, 25, 26 | mp3an 1327 | . . 3 DECID |
28 | exmiddc 826 | . . 3 DECID | |
29 | 27, 28 | ax-mp 5 | . 2 |
30 | 4 | eqeq2i 2176 | . . . 4 |
31 | 0ex 4109 | . . . . 5 | |
32 | biidd 171 | . . . . 5 | |
33 | 31, 32 | rabsnt 3651 | . . . 4 |
34 | 30, 33 | sylbi 120 | . . 3 |
35 | df-rab 2453 | . . . . 5 | |
36 | iba 298 | . . . . . 6 | |
37 | 36 | abbi2dv 2285 | . . . . 5 |
38 | 35, 37 | eqtr4id 2218 | . . . 4 |
39 | 38 | con3i 622 | . . 3 |
40 | 34, 39 | orim12i 749 | . 2 |
41 | 29, 40 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 wceq 1343 wcel 2136 cab 2151 wral 2444 crab 2448 cun 3114 c0 3409 csn 3576 cpr 3577 con0 4341 com 4567 c1o 6377 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-en 6707 df-fin 6709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |