| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabssab | GIF version | ||
| Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| rabssab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2484 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | simpr 110 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜑) | |
| 3 | 2 | ss2abi 3255 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝜑} |
| 4 | 1, 3 | eqsstri 3215 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2167 {cab 2182 {crab 2479 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 |
| This theorem is referenced by: epse 4377 riotasbc 5893 genipv 7576 toponsspwpwg 14258 dmtopon 14259 |
| Copyright terms: Public domain | W3C validator |