ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabssab GIF version

Theorem rabssab 3312
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab {𝑥𝐴𝜑} ⊆ {𝑥𝜑}

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 2517 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 simpr 110 . . 3 ((𝑥𝐴𝜑) → 𝜑)
32ss2abi 3296 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
41, 3eqsstri 3256 1 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2200  {cab 2215  {crab 2512  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-in 3203  df-ss 3210
This theorem is referenced by:  epse  4432  riotasbc  5970  genipv  7692  toponsspwpwg  14690  dmtopon  14691
  Copyright terms: Public domain W3C validator