ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabssab GIF version

Theorem rabssab 3271
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab {𝑥𝐴𝜑} ⊆ {𝑥𝜑}

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 2484 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 simpr 110 . . 3 ((𝑥𝐴𝜑) → 𝜑)
32ss2abi 3255 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
41, 3eqsstri 3215 1 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2167  {cab 2182  {crab 2479  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-in 3163  df-ss 3170
This theorem is referenced by:  epse  4377  riotasbc  5893  genipv  7576  toponsspwpwg  14258  dmtopon  14259
  Copyright terms: Public domain W3C validator