ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponsspwpwg Unicode version

Theorem toponsspwpwg 13071
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.)
Assertion
Ref Expression
toponsspwpwg  |-  ( A  e.  V  ->  (TopOn `  A )  C_  ~P ~P A )

Proof of Theorem toponsspwpwg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2746 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
2 rabssab 3241 . . . . . 6  |-  { y  e.  Top  |  A  =  U. y }  C_  { y  |  A  = 
U. y }
3 eqcom 2177 . . . . . . 7  |-  ( A  =  U. y  <->  U. y  =  A )
43abbii 2291 . . . . . 6  |-  { y  |  A  =  U. y }  =  {
y  |  U. y  =  A }
52, 4sseqtri 3187 . . . . 5  |-  { y  e.  Top  |  A  =  U. y }  C_  { y  |  U. y  =  A }
6 pwpwssunieq 3970 . . . . 5  |-  { y  |  U. y  =  A }  C_  ~P ~P A
75, 6sstri 3162 . . . 4  |-  { y  e.  Top  |  A  =  U. y }  C_  ~P ~P A
8 pwexg 4175 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  _V )
98pwexd 4176 . . . 4  |-  ( A  e.  V  ->  ~P ~P A  e.  _V )
10 ssexg 4137 . . . 4  |-  ( ( { y  e.  Top  |  A  =  U. y }  C_  ~P ~P A  /\  ~P ~P A  e. 
_V )  ->  { y  e.  Top  |  A  =  U. y }  e.  _V )
117, 9, 10sylancr 414 . . 3  |-  ( A  e.  V  ->  { y  e.  Top  |  A  =  U. y }  e.  _V )
12 eqeq1 2182 . . . . 5  |-  ( x  =  A  ->  (
x  =  U. y  <->  A  =  U. y ) )
1312rabbidv 2724 . . . 4  |-  ( x  =  A  ->  { y  e.  Top  |  x  =  U. y }  =  { y  e. 
Top  |  A  =  U. y } )
14 df-topon 13060 . . . 4  |- TopOn  =  ( x  e.  _V  |->  { y  e.  Top  |  x  =  U. y } )
1513, 14fvmptg 5584 . . 3  |-  ( ( A  e.  _V  /\  { y  e.  Top  |  A  =  U. y }  e.  _V )  ->  (TopOn `  A )  =  { y  e.  Top  |  A  =  U. y } )
161, 11, 15syl2anc 411 . 2  |-  ( A  e.  V  ->  (TopOn `  A )  =  {
y  e.  Top  |  A  =  U. y } )
1716, 7eqsstrdi 3205 1  |-  ( A  e.  V  ->  (TopOn `  A )  C_  ~P ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   {cab 2161   {crab 2457   _Vcvv 2735    C_ wss 3127   ~Pcpw 3572   U.cuni 3805   ` cfv 5208   Topctop 13046  TopOnctopon 13059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-topon 13060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator