ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotasbc Unicode version

Theorem riotasbc 5813
Description: Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotasbc  |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )

Proof of Theorem riotasbc
StepHypRef Expression
1 rabssab 3230 . . 3  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }
2 riotacl2 5811 . . 3  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)
31, 2sselid 3140 . 2  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  |  ph } )
4 df-sbc 2952 . 2  |-  ( [. ( iota_ x  e.  A  ph )  /  x ]. ph  <->  (
iota_ x  e.  A  ph )  e.  { x  |  ph } )
53, 4sylibr 133 1  |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   {cab 2151   E!wreu 2446   {crab 2448   [.wsbc 2951   iota_crio 5797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153  df-riota 5798
This theorem is referenced by:  riotass2  5824  riotass  5825  cjth  10788
  Copyright terms: Public domain W3C validator