ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotasbc Unicode version

Theorem riotasbc 5893
Description: Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotasbc  |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )

Proof of Theorem riotasbc
StepHypRef Expression
1 rabssab 3271 . . 3  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }
2 riotacl2 5891 . . 3  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)
31, 2sselid 3181 . 2  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  |  ph } )
4 df-sbc 2990 . 2  |-  ( [. ( iota_ x  e.  A  ph )  /  x ]. ph  <->  (
iota_ x  e.  A  ph )  e.  { x  |  ph } )
53, 4sylibr 134 1  |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   {cab 2182   E!wreu 2477   {crab 2479   [.wsbc 2989   iota_crio 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-uni 3840  df-iota 5219  df-riota 5877
This theorem is referenced by:  riotass2  5904  riotass  5905  cjth  11011
  Copyright terms: Public domain W3C validator