ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotasbc Unicode version

Theorem riotasbc 5938
Description: Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotasbc  |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )

Proof of Theorem riotasbc
StepHypRef Expression
1 rabssab 3289 . . 3  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }
2 riotacl2 5936 . . 3  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)
31, 2sselid 3199 . 2  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  |  ph } )
4 df-sbc 3006 . 2  |-  ( [. ( iota_ x  e.  A  ph )  /  x ]. ph  <->  (
iota_ x  e.  A  ph )  e.  { x  |  ph } )
53, 4sylibr 134 1  |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   {cab 2193   E!wreu 2488   {crab 2490   [.wsbc 3005   iota_crio 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-uni 3865  df-iota 5251  df-riota 5922
This theorem is referenced by:  riotass2  5949  riotass  5950  cjth  11272
  Copyright terms: Public domain W3C validator