ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcom Unicode version

Theorem ralcom 2531
Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
ralcom  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Distinct variable groups:    x, y    x, B    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem ralcom
StepHypRef Expression
1 nfcv 2229 . 2  |-  F/_ y A
2 nfcv 2229 . 2  |-  F/_ x B
31, 2ralcomf 2529 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wral 2360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365
This theorem is referenced by:  ralcom4  2642  ssint  3710  issod  4155  reusv3  4295  cnvpom  4986  cnvsom  4987  fununi  5095  isocnv2  5605  dfsmo2  6066  ixpiinm  6495  rexfiuz  10476  tgss2  11833
  Copyright terms: Public domain W3C validator