| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralcom | Unicode version | ||
| Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| ralcom | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2339 | 
. 2
 | |
| 2 | nfcv 2339 | 
. 2
 | |
| 3 | 1, 2 | ralcomf 2658 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 | 
| This theorem is referenced by: ralrot3 2662 ralcom4 2785 ssint 3890 issod 4354 reusv3 4495 cnvpom 5212 cnvsom 5213 fununi 5326 isocnv2 5859 dfsmo2 6345 ixpiinm 6783 rexfiuz 11154 isnsg2 13333 opprsubrngg 13767 opprdomnbg 13830 rmodislmodlem 13906 rmodislmod 13907 tgss2 14315 cnmptcom 14534 | 
| Copyright terms: Public domain | W3C validator |