ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcom Unicode version

Theorem ralcom 2633
Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
ralcom  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Distinct variable groups:    x, y    x, B    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem ralcom
StepHypRef Expression
1 nfcv 2312 . 2  |-  F/_ y A
2 nfcv 2312 . 2  |-  F/_ x B
31, 2ralcomf 2631 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453
This theorem is referenced by:  ralcom4  2752  ssint  3847  issod  4304  reusv3  4445  cnvpom  5153  cnvsom  5154  fununi  5266  isocnv2  5791  dfsmo2  6266  ixpiinm  6702  rexfiuz  10953  tgss2  12873  cnmptcom  13092
  Copyright terms: Public domain W3C validator