| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralcom | Unicode version | ||
| Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. 2
| |
| 2 | nfcv 2348 |
. 2
| |
| 3 | 1, 2 | ralcomf 2667 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: ralrot3 2671 ralcom4 2794 ssint 3901 issod 4367 reusv3 4508 cnvpom 5226 cnvsom 5227 fununi 5343 isocnv2 5883 dfsmo2 6375 ixpiinm 6813 rexfiuz 11333 isnsg2 13572 opprsubrngg 14006 opprdomnbg 14069 rmodislmodlem 14145 rmodislmod 14146 tgss2 14584 cnmptcom 14803 |
| Copyright terms: Public domain | W3C validator |