ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcom Unicode version

Theorem ralcom 2669
Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
ralcom  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Distinct variable groups:    x, y    x, B    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem ralcom
StepHypRef Expression
1 nfcv 2348 . 2  |-  F/_ y A
2 nfcv 2348 . 2  |-  F/_ x B
31, 2ralcomf 2667 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489
This theorem is referenced by:  ralrot3  2671  ralcom4  2794  ssint  3901  issod  4367  reusv3  4508  cnvpom  5226  cnvsom  5227  fununi  5343  isocnv2  5883  dfsmo2  6375  ixpiinm  6813  rexfiuz  11333  isnsg2  13572  opprsubrngg  14006  opprdomnbg  14069  rmodislmodlem  14145  rmodislmod  14146  tgss2  14584  cnmptcom  14803
  Copyright terms: Public domain W3C validator