ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcom Unicode version

Theorem ralcom 2694
Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
ralcom  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Distinct variable groups:    x, y    x, B    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem ralcom
StepHypRef Expression
1 nfcv 2372 . 2  |-  F/_ y A
2 nfcv 2372 . 2  |-  F/_ x B
31, 2ralcomf 2692 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513
This theorem is referenced by:  ralrot3  2696  ralcom4  2822  ssint  3939  issod  4410  reusv3  4551  cnvpom  5271  cnvsom  5272  fununi  5389  isocnv2  5936  dfsmo2  6433  ixpiinm  6871  rexfiuz  11500  isnsg2  13740  opprsubrngg  14175  opprdomnbg  14238  rmodislmodlem  14314  rmodislmod  14315  tgss2  14753  cnmptcom  14972
  Copyright terms: Public domain W3C validator