| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexcomf | Unicode version | ||
| Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralcomf.1 |
|
| ralcomf.2 |
|
| Ref | Expression |
|---|---|
| rexcomf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 |
. . . . 5
| |
| 2 | 1 | anbi1i 458 |
. . . 4
|
| 3 | 2 | 2exbii 1630 |
. . 3
|
| 4 | excom 1688 |
. . 3
| |
| 5 | 3, 4 | bitri 184 |
. 2
|
| 6 | ralcomf.1 |
. . 3
| |
| 7 | 6 | r2exf 2526 |
. 2
|
| 8 | ralcomf.2 |
. . 3
| |
| 9 | 8 | r2exf 2526 |
. 2
|
| 10 | 5, 7, 9 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 |
| This theorem is referenced by: rexcom 2672 |
| Copyright terms: Public domain | W3C validator |