ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcomf Unicode version

Theorem rexcomf 2628
Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
ralcomf.1  |-  F/_ y A
ralcomf.2  |-  F/_ x B
Assertion
Ref Expression
rexcomf  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. y  e.  B  E. x  e.  A  ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)    B( x, y)

Proof of Theorem rexcomf
StepHypRef Expression
1 ancom 264 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  <->  ( y  e.  B  /\  x  e.  A )
)
21anbi1i 454 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  <->  ( (
y  e.  B  /\  x  e.  A )  /\  ph ) )
322exbii 1594 . . 3  |-  ( E. x E. y ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  <->  E. x E. y ( ( y  e.  B  /\  x  e.  A )  /\  ph ) )
4 excom 1652 . . 3  |-  ( E. x E. y ( ( y  e.  B  /\  x  e.  A
)  /\  ph )  <->  E. y E. x ( ( y  e.  B  /\  x  e.  A )  /\  ph ) )
53, 4bitri 183 . 2  |-  ( E. x E. y ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  <->  E. y E. x ( ( y  e.  B  /\  x  e.  A )  /\  ph ) )
6 ralcomf.1 . . 3  |-  F/_ y A
76r2exf 2484 . 2  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) )
8 ralcomf.2 . . 3  |-  F/_ x B
98r2exf 2484 . 2  |-  ( E. y  e.  B  E. x  e.  A  ph  <->  E. y E. x ( ( y  e.  B  /\  x  e.  A )  /\  ph ) )
105, 7, 93bitr4i 211 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. y  e.  B  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1480    e. wcel 2136   F/_wnfc 2295   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450
This theorem is referenced by:  rexcom  2630
  Copyright terms: Public domain W3C validator