ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcdifap Unicode version

Theorem limcdifap 14514
Description: It suffices to consider functions which are not defined at 
B to define the limit of a function. In particular, the value of the original function  F at  B does not affect the limit of  F. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
Hypotheses
Ref Expression
limccl.f  |-  ( ph  ->  F : A --> CC )
limcdifap.a  |-  ( ph  ->  A  C_  CC )
Assertion
Ref Expression
limcdifap  |-  ( ph  ->  ( F lim CC  B
)  =  ( ( F  |`  { x  e.  A  |  x #  B } ) lim CC  B
) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem limcdifap
Dummy variables  d  e  u  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 14510 . . . . 5  |-  ( u  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
21simp3d 1012 . . . 4  |-  ( u  e.  ( F lim CC  B )  ->  B  e.  CC )
32a1i 9 . . 3  |-  ( ph  ->  ( u  e.  ( F lim CC  B )  ->  B  e.  CC ) )
4 limcrcl 14510 . . . . 5  |-  ( u  e.  ( ( F  |`  { x  e.  A  |  x #  B }
) lim CC  B )  ->  ( ( F  |`  { x  e.  A  |  x #  B }
) : dom  ( F  |`  { x  e.  A  |  x #  B } ) --> CC  /\  dom  ( F  |`  { x  e.  A  |  x #  B } )  C_  CC  /\  B  e.  CC ) )
54simp3d 1012 . . . 4  |-  ( u  e.  ( ( F  |`  { x  e.  A  |  x #  B }
) lim CC  B )  ->  B  e.  CC )
65a1i 9 . . 3  |-  ( ph  ->  ( u  e.  ( ( F  |`  { x  e.  A  |  x #  B } ) lim CC  B
)  ->  B  e.  CC ) )
7 breq1 4020 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
x #  B  <->  z #  B
) )
8 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  e.  CC )  /\  z  e.  A
)  /\  z #  B
)  ->  z  e.  A )
9 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  e.  CC )  /\  z  e.  A
)  /\  z #  B
)  ->  z #  B
)
107, 8, 9elrabd 2909 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  e.  CC )  /\  z  e.  A
)  /\  z #  B
)  ->  z  e.  { x  e.  A  |  x #  B } )
11 fvres 5553 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  { x  e.  A  |  x #  B }  ->  ( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  =  ( F `  z ) )
1211eqcomd 2194 . . . . . . . . . . . . . . . 16  |-  ( z  e.  { x  e.  A  |  x #  B }  ->  ( F `  z )  =  ( ( F  |`  { x  e.  A  |  x #  B } ) `  z
) )
1310, 12syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  e.  CC )  /\  z  e.  A
)  /\  z #  B
)  ->  ( F `  z )  =  ( ( F  |`  { x  e.  A  |  x #  B } ) `  z
) )
1413fvoveq1d 5912 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  e.  CC )  /\  z  e.  A
)  /\  z #  B
)  ->  ( abs `  ( ( F `  z )  -  u
) )  =  ( abs `  ( ( ( F  |`  { x  e.  A  |  x #  B } ) `  z
)  -  u ) ) )
1514breq1d 4027 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  e.  CC )  /\  z  e.  A
)  /\  z #  B
)  ->  ( ( abs `  ( ( F `
 z )  -  u ) )  < 
e  <->  ( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) )
1615imbi2d 230 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  e.  CC )  /\  z  e.  A
)  /\  z #  B
)  ->  ( (
( abs `  (
z  -  B ) )  <  d  -> 
( abs `  (
( F `  z
)  -  u ) )  <  e )  <-> 
( ( abs `  (
z  -  B ) )  <  d  -> 
( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) )
1716pm5.74da 443 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  e.  CC )  /\  z  e.  A )  ->  (
( z #  B  -> 
( ( abs `  (
z  -  B ) )  <  d  -> 
( abs `  (
( F `  z
)  -  u ) )  <  e ) )  <->  ( z #  B  ->  ( ( abs `  (
z  -  B ) )  <  d  -> 
( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) ) )
18 impexp 263 . . . . . . . . . . 11  |-  ( ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  u ) )  <  e )  <-> 
( z #  B  -> 
( ( abs `  (
z  -  B ) )  <  d  -> 
( abs `  (
( F `  z
)  -  u ) )  <  e ) ) )
19 impexp 263 . . . . . . . . . . . . 13  |-  ( ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e )  <->  ( z #  B  ->  ( ( abs `  ( z  -  B
) )  <  d  ->  ( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) )
2019imbi2i 226 . . . . . . . . . . . 12  |-  ( ( z #  B  ->  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) )  <->  ( z #  B  ->  ( z #  B  ->  ( ( abs `  (
z  -  B ) )  <  d  -> 
( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) ) )
21 pm5.4 249 . . . . . . . . . . . 12  |-  ( ( z #  B  ->  (
z #  B  ->  (
( abs `  (
z  -  B ) )  <  d  -> 
( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) )  <-> 
( z #  B  -> 
( ( abs `  (
z  -  B ) )  <  d  -> 
( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) )
2220, 21bitri 184 . . . . . . . . . . 11  |-  ( ( z #  B  ->  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) )  <->  ( z #  B  ->  ( ( abs `  ( z  -  B
) )  <  d  ->  ( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) )
2317, 18, 223bitr4g 223 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  e.  CC )  /\  z  e.  A )  ->  (
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  u ) )  <  e )  <-> 
( z #  B  -> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) ) )
2423ralbidva 2485 . . . . . . . . 9  |-  ( (
ph  /\  B  e.  CC )  ->  ( A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  u ) )  <  e )  <->  A. z  e.  A  ( z #  B  ->  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) ) )
257ralrab 2912 . . . . . . . . 9  |-  ( A. z  e.  { x  e.  A  |  x #  B }  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( ( F  |`  { x  e.  A  |  x #  B } ) `  z
)  -  u ) )  <  e )  <->  A. z  e.  A  ( z #  B  ->  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) )
2624, 25bitr4di 198 . . . . . . . 8  |-  ( (
ph  /\  B  e.  CC )  ->  ( A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  u ) )  <  e )  <->  A. z  e.  { x  e.  A  |  x #  B }  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( ( F  |`  { x  e.  A  |  x #  B } ) `  z
)  -  u ) )  <  e ) ) )
2726rexbidv 2490 . . . . . . 7  |-  ( (
ph  /\  B  e.  CC )  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  u ) )  < 
e )  <->  E. d  e.  RR+  A. z  e. 
{ x  e.  A  |  x #  B } 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) )
2827ralbidv 2489 . . . . . 6  |-  ( (
ph  /\  B  e.  CC )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  u
) )  <  e
)  <->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  { x  e.  A  |  x #  B } 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) )
2928anbi2d 464 . . . . 5  |-  ( (
ph  /\  B  e.  CC )  ->  ( ( u  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  u
) )  <  e
) )  <->  ( u  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  {
x  e.  A  |  x #  B }  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( ( F  |`  { x  e.  A  |  x #  B } ) `  z
)  -  u ) )  <  e ) ) ) )
30 limccl.f . . . . . . 7  |-  ( ph  ->  F : A --> CC )
3130adantr 276 . . . . . 6  |-  ( (
ph  /\  B  e.  CC )  ->  F : A
--> CC )
32 limcdifap.a . . . . . . 7  |-  ( ph  ->  A  C_  CC )
3332adantr 276 . . . . . 6  |-  ( (
ph  /\  B  e.  CC )  ->  A  C_  CC )
34 simpr 110 . . . . . 6  |-  ( (
ph  /\  B  e.  CC )  ->  B  e.  CC )
3531, 33, 34ellimc3ap 14513 . . . . 5  |-  ( (
ph  /\  B  e.  CC )  ->  ( u  e.  ( F lim CC  B )  <->  ( u  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  u ) )  <  e ) ) ) )
36 ssrab2 3254 . . . . . . 7  |-  { x  e.  A  |  x #  B }  C_  A
37 fssres 5405 . . . . . . 7  |-  ( ( F : A --> CC  /\  { x  e.  A  |  x #  B }  C_  A
)  ->  ( F  |` 
{ x  e.  A  |  x #  B }
) : { x  e.  A  |  x #  B } --> CC )
3831, 36, 37sylancl 413 . . . . . 6  |-  ( (
ph  /\  B  e.  CC )  ->  ( F  |`  { x  e.  A  |  x #  B }
) : { x  e.  A  |  x #  B } --> CC )
3936, 33sstrid 3180 . . . . . 6  |-  ( (
ph  /\  B  e.  CC )  ->  { x  e.  A  |  x #  B }  C_  CC )
4038, 39, 34ellimc3ap 14513 . . . . 5  |-  ( (
ph  /\  B  e.  CC )  ->  ( u  e.  ( ( F  |`  { x  e.  A  |  x #  B }
) lim CC  B )  <->  ( u  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
{ x  e.  A  |  x #  B } 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( ( F  |`  { x  e.  A  |  x #  B }
) `  z )  -  u ) )  < 
e ) ) ) )
4129, 35, 403bitr4d 220 . . . 4  |-  ( (
ph  /\  B  e.  CC )  ->  ( u  e.  ( F lim CC  B )  <->  u  e.  ( ( F  |`  { x  e.  A  |  x #  B }
) lim CC  B )
) )
4241ex 115 . . 3  |-  ( ph  ->  ( B  e.  CC  ->  ( u  e.  ( F lim CC  B )  <-> 
u  e.  ( ( F  |`  { x  e.  A  |  x #  B } ) lim CC  B
) ) ) )
433, 6, 42pm5.21ndd 706 . 2  |-  ( ph  ->  ( u  e.  ( F lim CC  B )  <-> 
u  e.  ( ( F  |`  { x  e.  A  |  x #  B } ) lim CC  B
) ) )
4443eqrdv 2186 1  |-  ( ph  ->  ( F lim CC  B
)  =  ( ( F  |`  { x  e.  A  |  x #  B } ) lim CC  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2159   A.wral 2467   E.wrex 2468   {crab 2471    C_ wss 3143   class class class wbr 4017   dom cdm 4640    |` cres 4642   -->wf 5226   ` cfv 5230  (class class class)co 5890   CCcc 7826    < clt 8009    - cmin 8145   # cap 8555   RR+crp 9670   abscabs 11023   lim CC climc 14506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-rab 2476  df-v 2753  df-sbc 2977  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-opab 4079  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-fv 5238  df-ov 5893  df-oprab 5894  df-mpo 5895  df-pm 6668  df-limced 14508
This theorem is referenced by:  dvcnp2cntop  14546  dvmulxxbr  14549  dvrecap  14560
  Copyright terms: Public domain W3C validator