ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsvalg Unicode version

Theorem setsvalg 12495
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsvalg  |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )

Proof of Theorem setsvalg
Dummy variables  e  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2750 . 2  |-  ( S  e.  V  ->  S  e.  _V )
2 elex 2750 . 2  |-  ( A  e.  W  ->  A  e.  _V )
3 resexg 4949 . . . 4  |-  ( S  e.  _V  ->  ( S  |`  ( _V  \  dom  { A } ) )  e.  _V )
4 snexg 4186 . . . 4  |-  ( A  e.  _V  ->  { A }  e.  _V )
5 unexg 4445 . . . 4  |-  ( ( ( S  |`  ( _V  \  dom  { A } ) )  e. 
_V  /\  { A }  e.  _V )  ->  ( ( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )
63, 4, 5syl2an 289 . . 3  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( ( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )
7 simpl 109 . . . . . 6  |-  ( ( s  =  S  /\  e  =  A )  ->  s  =  S )
8 simpr 110 . . . . . . . . 9  |-  ( ( s  =  S  /\  e  =  A )  ->  e  =  A )
98sneqd 3607 . . . . . . . 8  |-  ( ( s  =  S  /\  e  =  A )  ->  { e }  =  { A } )
109dmeqd 4831 . . . . . . 7  |-  ( ( s  =  S  /\  e  =  A )  ->  dom  { e }  =  dom  { A } )
1110difeq2d 3255 . . . . . 6  |-  ( ( s  =  S  /\  e  =  A )  ->  ( _V  \  dom  { e } )  =  ( _V  \  dom  { A } ) )
127, 11reseq12d 4910 . . . . 5  |-  ( ( s  =  S  /\  e  =  A )  ->  ( s  |`  ( _V  \  dom  { e } ) )  =  ( S  |`  ( _V  \  dom  { A } ) ) )
1312, 9uneq12d 3292 . . . 4  |-  ( ( s  =  S  /\  e  =  A )  ->  ( ( s  |`  ( _V  \  dom  {
e } ) )  u.  { e } )  =  ( ( S  |`  ( _V  \  dom  { A }
) )  u.  { A } ) )
14 df-sets 12472 . . . 4  |- sSet  =  ( s  e.  _V , 
e  e.  _V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u. 
{ e } ) )
1513, 14ovmpoga 6007 . . 3  |-  ( ( S  e.  _V  /\  A  e.  _V  /\  (
( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )  -> 
( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
166, 15mpd3an3 1338 . 2  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
171, 2, 16syl2an 289 1  |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739    \ cdif 3128    u. cun 3129   {csn 3594   dom cdm 4628    |` cres 4630  (class class class)co 5878   sSet csts 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-sets 12472
This theorem is referenced by:  setsvala  12496  setsfun  12500  setsfun0  12501  setsresg  12503
  Copyright terms: Public domain W3C validator