ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsvalg Unicode version

Theorem setsvalg 12733
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsvalg  |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )

Proof of Theorem setsvalg
Dummy variables  e  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . 2  |-  ( S  e.  V  ->  S  e.  _V )
2 elex 2774 . 2  |-  ( A  e.  W  ->  A  e.  _V )
3 resexg 4987 . . . 4  |-  ( S  e.  _V  ->  ( S  |`  ( _V  \  dom  { A } ) )  e.  _V )
4 snexg 4218 . . . 4  |-  ( A  e.  _V  ->  { A }  e.  _V )
5 unexg 4479 . . . 4  |-  ( ( ( S  |`  ( _V  \  dom  { A } ) )  e. 
_V  /\  { A }  e.  _V )  ->  ( ( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )
63, 4, 5syl2an 289 . . 3  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( ( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )
7 simpl 109 . . . . . 6  |-  ( ( s  =  S  /\  e  =  A )  ->  s  =  S )
8 simpr 110 . . . . . . . . 9  |-  ( ( s  =  S  /\  e  =  A )  ->  e  =  A )
98sneqd 3636 . . . . . . . 8  |-  ( ( s  =  S  /\  e  =  A )  ->  { e }  =  { A } )
109dmeqd 4869 . . . . . . 7  |-  ( ( s  =  S  /\  e  =  A )  ->  dom  { e }  =  dom  { A } )
1110difeq2d 3282 . . . . . 6  |-  ( ( s  =  S  /\  e  =  A )  ->  ( _V  \  dom  { e } )  =  ( _V  \  dom  { A } ) )
127, 11reseq12d 4948 . . . . 5  |-  ( ( s  =  S  /\  e  =  A )  ->  ( s  |`  ( _V  \  dom  { e } ) )  =  ( S  |`  ( _V  \  dom  { A } ) ) )
1312, 9uneq12d 3319 . . . 4  |-  ( ( s  =  S  /\  e  =  A )  ->  ( ( s  |`  ( _V  \  dom  {
e } ) )  u.  { e } )  =  ( ( S  |`  ( _V  \  dom  { A }
) )  u.  { A } ) )
14 df-sets 12710 . . . 4  |- sSet  =  ( s  e.  _V , 
e  e.  _V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u. 
{ e } ) )
1513, 14ovmpoga 6056 . . 3  |-  ( ( S  e.  _V  /\  A  e.  _V  /\  (
( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )  -> 
( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
166, 15mpd3an3 1349 . 2  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
171, 2, 16syl2an 289 1  |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    \ cdif 3154    u. cun 3155   {csn 3623   dom cdm 4664    |` cres 4666  (class class class)co 5925   sSet csts 12701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sets 12710
This theorem is referenced by:  setsvala  12734  setsfun  12738  setsfun0  12739  setsresg  12741
  Copyright terms: Public domain W3C validator