ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsvalg Unicode version

Theorem setsvalg 12862
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsvalg  |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )

Proof of Theorem setsvalg
Dummy variables  e  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2783 . 2  |-  ( S  e.  V  ->  S  e.  _V )
2 elex 2783 . 2  |-  ( A  e.  W  ->  A  e.  _V )
3 resexg 4999 . . . 4  |-  ( S  e.  _V  ->  ( S  |`  ( _V  \  dom  { A } ) )  e.  _V )
4 snexg 4228 . . . 4  |-  ( A  e.  _V  ->  { A }  e.  _V )
5 unexg 4490 . . . 4  |-  ( ( ( S  |`  ( _V  \  dom  { A } ) )  e. 
_V  /\  { A }  e.  _V )  ->  ( ( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )
63, 4, 5syl2an 289 . . 3  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( ( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )
7 simpl 109 . . . . . 6  |-  ( ( s  =  S  /\  e  =  A )  ->  s  =  S )
8 simpr 110 . . . . . . . . 9  |-  ( ( s  =  S  /\  e  =  A )  ->  e  =  A )
98sneqd 3646 . . . . . . . 8  |-  ( ( s  =  S  /\  e  =  A )  ->  { e }  =  { A } )
109dmeqd 4880 . . . . . . 7  |-  ( ( s  =  S  /\  e  =  A )  ->  dom  { e }  =  dom  { A } )
1110difeq2d 3291 . . . . . 6  |-  ( ( s  =  S  /\  e  =  A )  ->  ( _V  \  dom  { e } )  =  ( _V  \  dom  { A } ) )
127, 11reseq12d 4960 . . . . 5  |-  ( ( s  =  S  /\  e  =  A )  ->  ( s  |`  ( _V  \  dom  { e } ) )  =  ( S  |`  ( _V  \  dom  { A } ) ) )
1312, 9uneq12d 3328 . . . 4  |-  ( ( s  =  S  /\  e  =  A )  ->  ( ( s  |`  ( _V  \  dom  {
e } ) )  u.  { e } )  =  ( ( S  |`  ( _V  \  dom  { A }
) )  u.  { A } ) )
14 df-sets 12839 . . . 4  |- sSet  =  ( s  e.  _V , 
e  e.  _V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u. 
{ e } ) )
1513, 14ovmpoga 6075 . . 3  |-  ( ( S  e.  _V  /\  A  e.  _V  /\  (
( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )  -> 
( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
166, 15mpd3an3 1351 . 2  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
171, 2, 16syl2an 289 1  |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    \ cdif 3163    u. cun 3164   {csn 3633   dom cdm 4675    |` cres 4677  (class class class)co 5944   sSet csts 12830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sets 12839
This theorem is referenced by:  setsvala  12863  setsfun  12867  setsfun0  12868  setsresg  12870
  Copyright terms: Public domain W3C validator