Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsvalg | Unicode version |
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
setsvalg | sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 | |
2 | elex 2741 | . 2 | |
3 | resexg 4929 | . . . 4 | |
4 | snexg 4168 | . . . 4 | |
5 | unexg 4426 | . . . 4 | |
6 | 3, 4, 5 | syl2an 287 | . . 3 |
7 | simpl 108 | . . . . . 6 | |
8 | simpr 109 | . . . . . . . . 9 | |
9 | 8 | sneqd 3594 | . . . . . . . 8 |
10 | 9 | dmeqd 4811 | . . . . . . 7 |
11 | 10 | difeq2d 3245 | . . . . . 6 |
12 | 7, 11 | reseq12d 4890 | . . . . 5 |
13 | 12, 9 | uneq12d 3282 | . . . 4 |
14 | df-sets 12412 | . . . 4 sSet | |
15 | 13, 14 | ovmpoga 5980 | . . 3 sSet |
16 | 6, 15 | mpd3an3 1333 | . 2 sSet |
17 | 1, 2, 16 | syl2an 287 | 1 sSet |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 cdif 3118 cun 3119 csn 3581 cdm 4609 cres 4611 (class class class)co 5851 sSet csts 12403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-res 4621 df-iota 5158 df-fun 5198 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-sets 12412 |
This theorem is referenced by: setsvala 12436 setsfun 12440 setsfun0 12441 setsresg 12443 |
Copyright terms: Public domain | W3C validator |