ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resss Unicode version

Theorem resss 4908
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
resss  |-  ( A  |`  B )  C_  A

Proof of Theorem resss
StepHypRef Expression
1 df-res 4616 . 2  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
2 inss1 3342 . 2  |-  ( A  i^i  ( B  X.  _V ) )  C_  A
31, 2eqsstri 3174 1  |-  ( A  |`  B )  C_  A
Colors of variables: wff set class
Syntax hints:   _Vcvv 2726    i^i cin 3115    C_ wss 3116    X. cxp 4602    |` cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-res 4616
This theorem is referenced by:  relssres  4922  resexg  4924  iss  4930  cocnvres  5128  relresfld  5133  relcoi1  5135  funres  5229  funres11  5260  funcnvres  5261  2elresin  5299  fssres  5363  foimacnv  5450  tposss  6214  dftpos4  6231  smores  6260  smores2  6262  caserel  7052  txss12  12906  txbasval  12907
  Copyright terms: Public domain W3C validator