ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resss Unicode version

Theorem resss 5029
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
resss  |-  ( A  |`  B )  C_  A

Proof of Theorem resss
StepHypRef Expression
1 df-res 4731 . 2  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
2 inss1 3424 . 2  |-  ( A  i^i  ( B  X.  _V ) )  C_  A
31, 2eqsstri 3256 1  |-  ( A  |`  B )  C_  A
Colors of variables: wff set class
Syntax hints:   _Vcvv 2799    i^i cin 3196    C_ wss 3197    X. cxp 4717    |` cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-res 4731
This theorem is referenced by:  relssres  5043  resexg  5045  iss  5051  cocnvres  5253  relresfld  5258  relcoi1  5260  funres  5359  funres11  5393  funcnvres  5394  2elresin  5434  fssres  5501  foimacnv  5590  tposss  6392  dftpos4  6409  smores  6438  smores2  6440  caserel  7254  txss12  14940  txbasval  14941
  Copyright terms: Public domain W3C validator