ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsex Unicode version

Theorem setsex 12028
Description: Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
setsex  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  e.  _V )

Proof of Theorem setsex
StepHypRef Expression
1 setsvala 12027 . 2  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  B >. } ) )
2 resexg 4866 . . . 4  |-  ( S  e.  V  ->  ( S  |`  ( _V  \  { A } ) )  e.  _V )
323ad2ant1 1003 . . 3  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S  |`  ( _V  \  { A }
) )  e.  _V )
4 opexg 4157 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
543adant1 1000 . . . 4  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
6 snexg 4115 . . . 4  |-  ( <. A ,  B >.  e. 
_V  ->  { <. A ,  B >. }  e.  _V )
75, 6syl 14 . . 3  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  { <. A ,  B >. }  e.  _V )
8 unexg 4371 . . 3  |-  ( ( ( S  |`  ( _V  \  { A }
) )  e.  _V  /\ 
{ <. A ,  B >. }  e.  _V )  ->  ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  B >. } )  e.  _V )
93, 7, 8syl2anc 409 . 2  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  B >. } )  e.  _V )
101, 9eqeltrd 2217 1  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 963    e. wcel 1481   _Vcvv 2689    \ cdif 3072    u. cun 3073   {csn 3531   <.cop 3534    |` cres 4548  (class class class)co 5781   sSet csts 11994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-res 4558  df-iota 5095  df-fun 5132  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-sets 12003
This theorem is referenced by:  setsabsd  12035  setscom  12036  setsslnid  12047  ressval2  12056
  Copyright terms: Public domain W3C validator