| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > setsex | Unicode version | ||
| Description: Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| setsex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | setsvala 12709 | 
. 2
 | |
| 2 | resexg 4986 | 
. . . 4
 | |
| 3 | 2 | 3ad2ant1 1020 | 
. . 3
 | 
| 4 | opexg 4261 | 
. . . . 5
 | |
| 5 | 4 | 3adant1 1017 | 
. . . 4
 | 
| 6 | snexg 4217 | 
. . . 4
 | |
| 7 | 5, 6 | syl 14 | 
. . 3
 | 
| 8 | unexg 4478 | 
. . 3
 | |
| 9 | 3, 7, 8 | syl2anc 411 | 
. 2
 | 
| 10 | 1, 9 | eqeltrd 2273 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sets 12685 | 
| This theorem is referenced by: setsabsd 12717 setscom 12718 setsslnid 12730 ressvalsets 12742 ressex 12743 fnmgp 13478 mgpvalg 13479 mgpex 13481 opprvalg 13625 opprex 13629 sraval 13993 sralemg 13994 srascag 13998 sravscag 13999 sraipg 14000 sraex 14002 zlmval 14183 zlmlemg 14184 zlmsca 14188 zlmvscag 14189 znval 14192 znbaslemnn 14195 | 
| Copyright terms: Public domain | W3C validator |