ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsex Unicode version

Theorem setsex 12897
Description: Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
setsex  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  e.  _V )

Proof of Theorem setsex
StepHypRef Expression
1 setsvala 12896 . 2  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  B >. } ) )
2 resexg 5000 . . . 4  |-  ( S  e.  V  ->  ( S  |`  ( _V  \  { A } ) )  e.  _V )
323ad2ant1 1021 . . 3  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S  |`  ( _V  \  { A }
) )  e.  _V )
4 opexg 4273 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
543adant1 1018 . . . 4  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
6 snexg 4229 . . . 4  |-  ( <. A ,  B >.  e. 
_V  ->  { <. A ,  B >. }  e.  _V )
75, 6syl 14 . . 3  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  { <. A ,  B >. }  e.  _V )
8 unexg 4491 . . 3  |-  ( ( ( S  |`  ( _V  \  { A }
) )  e.  _V  /\ 
{ <. A ,  B >. }  e.  _V )  ->  ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  B >. } )  e.  _V )
93, 7, 8syl2anc 411 . 2  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  B >. } )  e.  _V )
101, 9eqeltrd 2282 1  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    e. wcel 2176   _Vcvv 2772    \ cdif 3163    u. cun 3164   {csn 3633   <.cop 3636    |` cres 4678  (class class class)co 5946   sSet csts 12863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-res 4688  df-iota 5233  df-fun 5274  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-sets 12872
This theorem is referenced by:  setsabsd  12904  setscom  12905  setsslnid  12917  ressvalsets  12929  ressex  12930  fnmgp  13717  mgpvalg  13718  mgpex  13720  opprvalg  13864  opprex  13868  sraval  14232  sralemg  14233  srascag  14237  sravscag  14238  sraipg  14239  sraex  14241  zlmval  14422  zlmlemg  14423  zlmsca  14427  zlmvscag  14428  znval  14431  znbaslemnn  14434
  Copyright terms: Public domain W3C validator