ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsex Unicode version

Theorem setsex 12426
Description: Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
setsex  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  e.  _V )

Proof of Theorem setsex
StepHypRef Expression
1 setsvala 12425 . 2  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  B >. } ) )
2 resexg 4924 . . . 4  |-  ( S  e.  V  ->  ( S  |`  ( _V  \  { A } ) )  e.  _V )
323ad2ant1 1008 . . 3  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S  |`  ( _V  \  { A }
) )  e.  _V )
4 opexg 4206 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
543adant1 1005 . . . 4  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
6 snexg 4163 . . . 4  |-  ( <. A ,  B >.  e. 
_V  ->  { <. A ,  B >. }  e.  _V )
75, 6syl 14 . . 3  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  { <. A ,  B >. }  e.  _V )
8 unexg 4421 . . 3  |-  ( ( ( S  |`  ( _V  \  { A }
) )  e.  _V  /\ 
{ <. A ,  B >. }  e.  _V )  ->  ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  B >. } )  e.  _V )
93, 7, 8syl2anc 409 . 2  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  B >. } )  e.  _V )
101, 9eqeltrd 2243 1  |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968    e. wcel 2136   _Vcvv 2726    \ cdif 3113    u. cun 3114   {csn 3576   <.cop 3579    |` cres 4606  (class class class)co 5842   sSet csts 12392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sets 12401
This theorem is referenced by:  setsabsd  12433  setscom  12434  setsslnid  12445  ressval2  12455
  Copyright terms: Public domain W3C validator