ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resixp Unicode version

Theorem resixp 6820
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
resixp  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  -> 
( F  |`  B )  e.  X_ x  e.  B  C )
Distinct variable groups:    x, A    x, B    x, F
Allowed substitution hint:    C( x)

Proof of Theorem resixp
StepHypRef Expression
1 resexg 4999 . . 3  |-  ( F  e.  X_ x  e.  A  C  ->  ( F  |`  B )  e.  _V )
21adantl 277 . 2  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  -> 
( F  |`  B )  e.  _V )
3 simpr 110 . . . . 5  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  F  e.  X_ x  e.  A  C )
4 elixp2 6789 . . . . 5  |-  ( F  e.  X_ x  e.  A  C 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  C ) )
53, 4sylib 122 . . . 4  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  -> 
( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  C ) )
65simp2d 1013 . . 3  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  F  Fn  A )
7 simpl 109 . . 3  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  B  C_  A )
8 fnssres 5389 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )
96, 7, 8syl2anc 411 . 2  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  -> 
( F  |`  B )  Fn  B )
105simp3d 1014 . . . 4  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  A. x  e.  A  ( F `  x )  e.  C )
11 ssralv 3257 . . . 4  |-  ( B 
C_  A  ->  ( A. x  e.  A  ( F `  x )  e.  C  ->  A. x  e.  B  ( F `  x )  e.  C
) )
127, 10, 11sylc 62 . . 3  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  A. x  e.  B  ( F `  x )  e.  C )
13 fvres 5600 . . . . 5  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
1413eleq1d 2274 . . . 4  |-  ( x  e.  B  ->  (
( ( F  |`  B ) `  x
)  e.  C  <->  ( F `  x )  e.  C
) )
1514ralbiia 2520 . . 3  |-  ( A. x  e.  B  (
( F  |`  B ) `
 x )  e.  C  <->  A. x  e.  B  ( F `  x )  e.  C )
1612, 15sylibr 134 . 2  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  A. x  e.  B  ( ( F  |`  B ) `  x
)  e.  C )
17 elixp2 6789 . 2  |-  ( ( F  |`  B )  e.  X_ x  e.  B  C 
<->  ( ( F  |`  B )  e.  _V  /\  ( F  |`  B )  Fn  B  /\  A. x  e.  B  (
( F  |`  B ) `
 x )  e.  C ) )
182, 9, 16, 17syl3anbrc 1184 1  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  -> 
( F  |`  B )  e.  X_ x  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166    |` cres 4677    Fn wfn 5266   ` cfv 5271   X_cixp 6785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ixp 6786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator